Free Access
Reprod. Nutr. Dev.
Volume 46, Number 2, March-April 2006
Page(s) 121 - 137
Published online 06 April 2006
References of Reprod. Nutr. Dev. 46 121-137
  1. Lallès JP, Toullec R, Bouchez P, Roger L. Antigenicity and digestive utilization of four soya products by the preruminant calf. Livest Prod Sci 1995, 41: 29-38 [CrossRef].
  2. Le Huërou-Luron I, Gestin M, Le Dréan G, Romé V, Bernard C, Chayvialle JA, Guilloteau P. Source of dietary protein influences kinetics of plasma gut regulatory peptide concentration in response to feeding in preruminant calves. Comp Biochem Physiol A 1998, 119: 817-824.
  3. Montagne L, Salgado P, Toullec R, Lallès JP. Enzymes of the small intestine of the calf: Effect of dietary protein source on the activities of some enzymes in the small intestinal mucosa and digesta. J Sci Food Agric 2002, 82: 1772-1779 [CrossRef].
  4. Toullec R, Guilloteau P. Research into the digestive physiology of the milk-fed calf. In: Van Weerden EJ, Huisman J (Eds), Nutrition and digestive physiology of monogastric farm animals, Pudoc, Wageningen, 1989, p 37-55.
  5. Verdonk JMAJ, Gerrits WJJ, Beynen AC. Replacement of milk protein by vegetable protein in milk replacer diets for veal calves: digestion in relation to intestinal health. In: Blok MC, Vahl HA, De Lange L, Van de Braak AE, Hemke G, Hessing M (Eds), Nutrition and health of the gastrointestinal tract, Wageningen Academic Publishers, Wageningen, 2002, p 183-198.
  6. Grizard J, Dardevet D, Papet I, Mosoni L, Patureau-Mirand P, Attaix D, Tauveron I, Bonin D, Arnal M. Nutrient regulation of skeletal muscle protein metabolism in animals. The involvement of hormones and substrates. Nutr Res Rev 1999, 39: 61-74.
  7. Chung TK, Baker DH. Methionine requirement of pigs between 5 and 20 kg body weight. J Anim Sci 1992, 70: 1857-1863 [PubMed].
  8. Gahl MJ, Crenshaw TD, Benevenga NJ. Diminishing returns in weight, nitrogen, and lysine gain of pigs fed six levels of lysine from three supplemental sources. J Anim Sci 1995, 73: 3177-3187.
  9. Markert W, Kirchgessner M, Roth FX. Bilanzstudien zur Reduzierung der N-Ausscheidung von Mastschweinen. J Anim Physiol Anim Nutr 1993, 70: 159-171.
  10. Mnilk B, Harris CI, Fuller MF. Lysine utilization by growing pigs: simultaneous measurement of protein accretion and lysine oxidation. Br J Nutr 1996, 75: 57-67 [CrossRef] [PubMed].
  11. Knap PW. Time trends of Gompertz growth parameters in "meat-type" pigs. Anim Sci 2000, 70: 39-49.
  12. Freetly HC, Nienaber JA, Brown-Brandl T. Relationships among heat production, body weight, and age in Finn sheep and Rambouillet ewes. J Anim Sci 2002, 80: 825-832 [PubMed].
  13. Freetly HC, Nienaber JA, Leymaster KA, Jenkins TG. Relationships among heat production, body weight, and age in Suffolk and Texel ewes. J Anim Sci 1995, 73: 1030-1037 [PubMed].
  14. Calo LL, McDowell RE, Van Vleck LD, Miller PD. Parameters of growth of Holstein-Friesian bulls. J Anim Sci 1973, 37: 417-422.
  15. Batterham ES, Andersen LM, Baignent DR, White E. Utilization of ileal digestible amino acids by growing pigs: effect of dietary lysine concentration on efficiency of lysine retention. Br J Nutr 1990, 64: 81-94 [CrossRef] [PubMed].
  16. Bikker P. Protein and lipid accretion in body components of growing pigs. PhD thesis, Animal Nutrition Group, Wageningen Agricultural University, Wageningen, The Netherlands, 1994.
  17. Campbell RG, Dunkin AC. The effects of energy intake and dietary protein on nitrogen retention, growth performance, body composition and some aspects of energy metabolism of baby pigs. Br J Nutr 1983, 49: 221-230 [CrossRef] [PubMed].
  18. De Lange CFM, Gillis AM, Simpson GJ. Influence of threonine intake on whole-body protein deposition and threonine utilization in growing pigs fed purified diets. J Anim Sci 2001, 79: 3087-3095 [PubMed].
  19. Dourmad JY, Guillou D, Sève B, Henry Y. Response to dietary lysine supply during the finishing period in pigs. Livest Prod Sci 1996, 45: 179-186 [CrossRef].
  20. Hennig U, Wünsche J, Meinl M, Borgmann E, Kreienbring F. The influence of graded protein supply at a high energy level on the fattening performance and the retention and utilisation of feed energy, protein and amino acids by female fattening pigs. 3. N retention and N and lysine metabolism determined by means of N balance and the analysis of the carcasses. Arch Anim Nutr 1982, 32: 637-649.
  21. Krick BJ, Boyd RD, Roneker KR, Beermann DH, Bauman DE, Ross DA, Maisinger DJ. Porcine somatotropin affects the dietary lysine requirement and net lysine utilization for growing pigs. J Nutr 1993, 123: 1913-1922 [PubMed].
  22. Möhn S, Gillis AM, Moughan PJ, De Lange CFM. Influence of dietary lysine and energy intakes on body protein deposition and lysine utilization in the growing pig. J Anim Sci 2000, 78: 1510-1519 [PubMed].
  23. Nieto R, Miranda A, García MA, Aguilera JF. The effect of dietary protein content and feeding level on the rate of protein deposition and energy utilization in growing Iberian pigs from 15 to 50 kg body weight. J Nutr 2002, 88: 39-49.
  24. Noblet J, Henry Y, Dubois S. Effect of protein and lysine levels in the diet on body gain composition and energy utilization. J Anim Sci 1987, 65: 717-726 [PubMed].
  25. Williams NH, Stahly TS, Zimmerman DR. Effect of chronic immune system activation on body nitrogen retention, partial efficiency of lysine utilization, and lysine needs of pigs. J Anim Sci 1997, 75: 2472-2480 [PubMed].
  26. Black JL, Pearce GR, Tribe DE. Protein requirements of growing lambs. Br J Nutr 1973, 30: 45-60 [CrossRef] [PubMed].
  27. Phillips DD, Walker DM. Milk replacers containing isolated groundnut protein for preruminant lambs: the effect of protein concentration and energy intake on the requirement for lysine. Aust J Agric Sci 1980, 31: 133-145.
  28. Walker DM, Faichney GJ. Nitrogen balance studies with the milk-fed lamb. 3. Effect of different nitrogen intakes on growth and nitrogen balance. Br J Nutr 1964, 18: 295-306 [CrossRef] [PubMed].
  29. Blome RM, Drackley JK, McKeith FK, Hutjens MF, McCoy GC. Growth, nutrient utilization, and body composition of dairy calves fed milk replacers containing different amounts of protein. J Anim Sci 2003, 81: 1641-1655 [PubMed].
  30. Donnelly PE, Hutton JB. Effects of dietary protein and energy on the growth of Friesian bull calves, I. Food intake, growth, and protein requirements. N Z J Agric Res 1976, 19: 289-297.
  31. Gerrits WJJ, Tolman GH, Schrama JW, Tamminga S, Bosch MW, Verstegen MWA. Effect of protein and protein-free energy intake on protein and fat deposition rates in preruminant calves of 80 to 240 kg live weight. J Anim Sci 1996, 74: 2129-2139 [PubMed].
  32. Tolman GH, Beelen GM. Endogenous nitrogen and amino acid flow in the terminal ileum of veal calves and the true digestibility of skim milk, soluble wheat and soya isolate proteins, In: Veal, Perspectives to the Year 2000, Proceedings of an International Symposium, Fédération de la Vitellerie Française, Le Mans, France, 1996, p 191-207.
  33. Keusenhoff R. Einflußfaktoren auf die N-Ausscheidungen beim Kalb. Arch Tierz 1992, 35: 571-579.
  34. Ternouth JH, Stobo JF, Roy JHB. The effect of milk substitute concentration upon the intake, digestion and growth of calves. Anim Prod 1985, 41: 151-159.
  35. Van Weerden EJ, Huisman J. Amino acid requirement of the young veal calf. J Anim Physiol Anim Nutr 1985, 53: 232-244.
  36. Tolman GH, Wiebenga J. The lysine and methionine+cystine requirement of Friesian veal calves in various weight ranges. Internal report nr I 91-3752A, TNO Nutrition and Food Research Institute, Dept. of Animal Nutrition and Meat Technology, Wageningen, The Netherlands, 1991 (in Dutch).
  37. Tolman GH, Wiebenga J, Beelen GM. The lysine and methionine+cystine requirement of Friesian veal calves (220-250 kg). Internal report nr I 91-3740, TNO Nutrition and Food Research Institute, Dept. of Animal Nutrition and Meat Technology, Wageningen, The Netherlands, 1991 (in Dutch).
  38. Tolman GH. The lysine, methionine+cystine and threonine requirement and utilization of non-ruminating veal calves of 50-70 kg. In: Nunes AF, Portugal AV, Costa JP, Ribeiro JR (Eds), Protein Metabolism and Nutrition, EAAP Publ No 81, Vale de Santarém, Portugal, 1996, p 273-274.
  39. Black JL, Campbell RG, Williams IH, James KJ, Davies GT. Simulation of energy and amino acid utilisation in the pig. Res Dev Agric 1986, 3: 121-145.
  40. Campbell RG, Taverner MR, Curic DM. Effects of sex and energy intake between 48 and 90 kg live weight on protein deposition in growing pigs. Anim Prod 1985, 40: 497-503.
  41. Dunkin AC, Black JL, James KJ. Relation between energy intake and nitrogen retention in entire male pigs weighing 75 kg. Br J Nutr 1986, 55: 201-207 [CrossRef] [PubMed].
  42. Schroeder GF, Titgemeyer EC, Awawdeh MS, Gnad DP. Effects of energy supply on methionine utilization by growing steers. J Dairy Sci 2004, 87 (Suppl 1): 115.
  43. Gerrits WJJ, Schrama JW, Tamminga S. The marginal efficiency of utilization of all ileal digestible indispensible amino acids for protein gain is lower than 30% in preruminant calves between 80 and 240 kg live weight. J Nutr 1998, 128: 1774-1785 [PubMed].
  44. Fligger JM, Gibson CA, Sordillo LM, Baumrucker CR. Arginine supplementation increases weight gain, depresses antibody production, and alters circulating leukocyte profiles in preruminant calves without affecting plasma growth hormone concentrations. J Anim Sci 1997, 75: 3019-3025 [PubMed].
  45. Hüsler BR, Blum JW. Metabolic and endocrine changes in response to endotoxin administration with or without oral arginine supplementation. J Dairy Sci 2002, 85: 1927-1935 [PubMed].
  46. Kim SW, McPherson RL, Wu G. Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 2004, 134: 625-630 [PubMed].
  47. Milano GD, Lobley GE. Liver nitrogen movements during short-term infusion of high levels of ammonia into the mesenteric vein of sheep. Br J Nutr 2001, 86: 507-513 [PubMed].
  48. Lobley GE, Milano GD. Regulation of hepatic nitrogen metabolism in ruminants. Proc Nutr Soc 1997, 56: 547-563 [CrossRef] [PubMed].
  49. Orzechowsky A, Pierzynowski S, Motyl T, Barej W. Net hepatic metabolism of ammonia, propionate and lactate in sheep in relation to gluconeogenesis and ureagenesis. J Anim Physiol Anim Nutr 1988, 59: 113-122.
  50. Symonds HW, Mather DL, Collis KA. The maximum capacity of the liver of the adult dairy cow to metabolize ammonia. Br J Nutr 1981, 46: 481-486 [CrossRef] [PubMed].
  51. Lobley GE, Weijs PJM, Connell A, Calder AG, Brown DS, Milne E. The fate of absorbed and exogenous ammonia as influenced by forage or forage-concentrate diets in growing sheep. Br J Nutr 1996, 76: 231-248 [CrossRef] [PubMed].
  52. Luo QJ, Maltby SA, Lobley GE, Calder AG, Lomax MA. The effect of amino acids on the metabolic fate of 15NH4Cl in isolated sheep hepatocytes. Eur J Biochem 1995, 228: 912-917 [CrossRef] [PubMed].
  53. Milano GD, Hotston-Moore A, Lobley GE. Influence of hepatic ammonia removal on ureagenesis, amino acid utilization and energy metabolism in the ovine liver. Br J Nutr 2000, 83: 307-315 [PubMed].
  54. Verdonk JMAJ, Gerrits WJJ, Beelen GM. Effect of protein source on portal nutrient fluxes in preruminant calves. Internal report No V99.030, ID TNO Animal Nutrition, Wageningen, The Netherlands, 2002 (in Dutch).
  55. Verdonk JMAJ, Gerrits WJJ, Beelen GM, Jansman AJM. Effect of protein source on portal nutrient fluxes in preruminant calves. In: Lobley GE, White A, MacRae JC (Eds), The VIIIth International Symposium on Protein Metabolism and Nutrition, Wageningen Pers, The Netherlands, Aberdeen, UK, 1999, p 47.
  56. Gerrits WJJ, Beelen GM, Dijkstra J, Verdonk JMAJ. Ammonia infusion and starch fermentation in preruminant calves (150-180 kg). Internal report No V99.001, ID TNO Animal Nutrition, Wageningen, The Netherlands, 2001 (in Dutch).
  57. Gerrits WJJ, Dijkstra J, Verdonk JMAJ, Beelen GM, Boer H. Effects of ammonia and starch infusion in the colon of preruminant calves. In: Lobley GE, White A, MacRae JC (Eds), The VIIIth International Symposium on Protein Metabolism and Nutrition, Aberdeen, UK, 1999, p 55.
  58. Breukink HJ, Wensing T, Van Weeren-Keverling Buisman A, Van Bruinessen-Kapsenberg EG, De Visser NA. Consequences of failure of the reticular groove reflex in veal calves fed milk replacer. Vet Quart 1988, 10: 126-135.
  59. Gentile A, Sconza S, Lorenz I, Otranto G, Rademacher G, Famigli-Bergamini P, Klee W. $\Delta$-Lactic acidosis in calves as a consequence of experimentally induced ruminal acidosis. J Vet Med Series A 2004, 51: 64-70 [CrossRef].
  60. Rademacher G, Korn N, Friedrich A. The ruminal drinker as patient in practice. Tierärztl Umschau 2003, 58: 115-125 (in German).
  61. Guilhermet R, Mathieu CM, Toullec R. Transit des aliments liquides au niveau de la gouttière oesophagienne chez le veau préruminant et ruminant. Ann Zootech (Paris) 1975, 24: 69-79.
  62. Wise GH, Anderson GW, Linnerud AC. Relationship of milk intake by sucking and by drinking to reticular-groove reactions and ingestion behavior in calves. J Dairy Sci 1984, 67: 1983-1992 [PubMed].
  63. Tadeu dos Santos G, Toullec R, Roger R, De la Grange H, Guilloteau P. Caractéristiques digestives des veaux de boucherie s'adaptant mal en atelier d'engraissement. Reprod Nutr Dev 1986, 26: 1217.
  64. Van Leeuwen P. Duodenal passage of synthetic amino acids, dissolved in milk, when supplied six hours preprandial. Internal report nr 81.20A, TNO Nutrition and Food Research Institute, Dept. of Animal Nutrition and Meat Technology, Wageningen, The Netherlands, 1978 (in Dutch).
  65. Van Leeuwen P. Duodenal passage of synthetic amino acids, dissolved in water, when supplied three hours preprandial. Internal report No 81.20, TNO Nutrition and Food Research Institute, Dept. of Animal Nutrition and Meat Technology, Wageningen, The Netherlands, 1977 (in Dutch).
  66. Liu SM, Lobley GE, Macleod NA, Kyle DJ, Chen XB, Orskov ER. Effects of long-term protein excess or deficiency on whole-body protein turnover in sheep nourished by intragastric infusion of nutrients. Br J Nutr 1995, 73: 829-839 [CrossRef] [PubMed].
  67. Burrin DG, Stoll B. Intestinal nutrient requirements in weanling pigs. In: Pluske JR, Le Dividich J, Verstegen MWA (Eds), Weaning the pigs - Concepts and consequences, Wageningen Academic Publishers, Wageningen, The Netherlands, 2003, p 301-335.
  68. MacRae JC, Bruce LA, Brown DS, Farningham DAH, Franklin M. Absorption of amino acids from the intestine and their net flux across the mesenteric- and portal-drained viscera of lambs. J Anim Sci 1997, 75: 3307-3314 [PubMed].
  69. Bos C, Stoll B, Fouillet H, Gaudichon C, Guan X, Grusak MA, Reeds PJ, Burrin DG, Tomé D. Postprandial intestinal and whole body nitrogen kinetics and distribution in piglets fed a single meal. Am J Physiol 2005, 288: E436-E446.
  70. Stoll B, Burrin DG, Henry J, Jahoor F, Reeds PJ. Phenylalanine utilization by the gut and liver measured with intravenous and intragastric tracers in pigs. Am J Physiol 1997, 273: G1208-G1217 [PubMed].
  71. Stoll B, Burrin DG, Henry J, Yu H, Jahoor F, Reeds PJ. Dietary amino acids are the preferential source of hepatic protein synthesis in piglets. J Nutr 1998, 128: 1517-1524 [PubMed].
  72. Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 1998, 128: 606-614 [PubMed].
  73. Lenis NP, Bikker P, Van der Meulen J, Van Diepen JTM, Bakker JGM, Jongbloed AW. Effect of dietary neutral detergent fiber on ileal digestibility and portal flux of nitrogen and amino acids and on nitrogen utilization in growing pigs. J Anim Sci 1996, 74: 2687-2699 [PubMed].
  74. Reverter M, Lundh T, Gonda HL, Lindberg JE. Portal net appearance of amino acids in growing pigs fed a barley-based diet with inclusion of three different forage meals. Br J Nutr 2000, 84: 483-494 [PubMed].
  75. Van der Meulen J, Bakker JGM, Smits B, De Visser H. Effect of source of starch on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig. Br J Nutr 1997, 78: 533-544 [CrossRef] [PubMed].
  76. Berthiaume R, Dubreuil P, Stevenson M, McBride BW, Lapierre H. Intestinal disappearance and mesenteric and portal appearance of amino acids in dairy cows fed ruminally protected methionine. J Dairy Sci 2001, 84: 194-203 [PubMed].
  77. Rémond D, Bernard L, Chauveau B, Nozière P, Poncet C. Digestion and nutrient net fluxes across the rumen, and the mesenteric- and portal-drained viscera in sheep fed with fresh forage twice daily: Net balance and dynamic aspects. Br J Nutr 2003, 89: 649-666 [CrossRef] [PubMed].
  78. Lapierre H, Bernier JF, Dubreuil P, Reynolds CK, Farmer C, Oeullet DR, Lobley GE. The effect of intake on protein metabolism across splanchnic tissues in growing beef steers. Br J Nutr 1999, 81: 457-466 [PubMed].
  79. Van Goudoever JB, Stoll B, Henry JF, Burrin DG, Reeds PJ. Adaptive regulation of intestinal lysine metabolism. Proc Nat Acad Sci 2000, 97: 11620-11625.
  80. Williams AP, Hewitt D. The amino acid requirements of the preruminant calf. Br J Nutr 1979, 41: 311-319 [CrossRef] [PubMed].
  81. Wu G, Morris SM. Arginine metabolism: nitric oxide and beyond. Biochem J 1998, 336: 1-17 [PubMed].
  82. Houlier ML, Patureau-Mirand P, Durand D, Bauchart D, Bayle G, Lefaivre J. Influence de la vitesse d'absorption des acides aminés sur leur bilan hépatique chez le veau préruminant. Reprod Nutr Dev 1990, 30: 135.
  83. Houlier ML, Patureau-Mirand P, Durand D, Bauchart D, Lefaivre J, Bayle G. Transport des acides aminés dans l'aire splanchnique par le plasma sanguin et le sang chez le veau préruminant. Reprod Nutr Dev 1991, 31: 399-410 [PubMed].
  84. Ortigues I, Martin C, Durand D. Circadian changes in net nutrient fluxes across the portal-drained viscera, the liver, and the hindquarters in preruminant calves. J Anim Sci 1996, 74: 895-907 [PubMed].
  85. Ortigues I, Martin C, Durand D, Vermorel M. Circadian changes in energy expenditure in the preruminant calf: whole animal and tissue level. J Anim Sci 1995, 73: 552-564 [PubMed].
  86. Lapierre H, Lobley GE. Nitrogen cycling in the ruminant: a review. J Dairy Sci 2001, 84 (Suppl E): E223-E236.
  87. Donkin SS, Armentano LE. Regulation of gluconeogenesis by insulin and glucagon in the neonatal bovine. Am J Physiol 1994, 266: R1229-R1237 [PubMed].
  88. Donkin SS, Armentano LE. Insulin and glucagon regulation of gluconeogenesis in preruminating and ruminating bovine. J Anim Sci 1995, 73: 546-551 [PubMed].
  89. Donkin SS, Bertics SJ, Armentano LE. Chronic and transitional regulation of gluconeogenesis and glyconeogenesis by insulin and glucagon in neonatal calf hepatocytes. J Anim Sci 1997, 75: 3082-3087 [PubMed].
  90. Lobley GE. Control of the metabolic fate of amino acids in ruminants: a review. J Anim Sci 1992, 70: 3264-3275 [PubMed].
  91. Doppenberg J, Palmquist DL. Effect of dietary fat level on feed intake, growth, plasma metabolites and hormones of calves fed dry or liquid diets. Livest Prod Sci 1991, 29: 151-158 [CrossRef].
  92. Hostettler-Allen RL, Tappy L, Blum JW. Insulin resistance, hyperglycemia, and glucosuria in intensively milk-fed calves. J Anim Sci 1994, 75: 160-173.
  93. Blum JW, Hammon HM. Endocrine and metabolic aspects in milk-fed calves. Domest Anim Endocrinol 1999, 17: 219-230 [CrossRef] [PubMed].
  94. Gerrits WJJ, Blum JW. A role of protein intake in the development of insulin resistance in preruminant calves. In: Blum JW, Elsasser T, Guilloteau P (Eds), Symposium on Growth in Ruminants: Basic Aspects, Theory and Practice for the Future, Berne, Switzerland, 1998, p 310.
  95. Biolo G, Tessari P, Inchiostro S, Bruttomesso D, Sabadin L, Fongher C, Panebianco G, Fratton MG, Tiengo A. Fasting and postmeal phenylalanine metabolism in mild type 2 diabetes. Am J Physiol 1992, 263: E877-E883 [PubMed].
  96. Luzi L, Petrides AS, De Fronzo RA. Different sensitivity of glucose and amino acid metabolism to insulin in NIDDM. Diabetes 1993, 42: 1868-1877 [PubMed].
  97. Gougeon R, Pencharz PB, Marliss EB. Effect of NIDDM on the kinetics of whole-body protein metabolism. Diabetes 1994, 43: 318-328 [PubMed].
  98. Garlick PJ, Grant I. Amino acid infusion increased the sensitivity of muscle protein synthesis in vivo to insulin: effect of branch chain amino acids. Biochem J 1988, 254: 579-584 [PubMed].
  99. Oddy VH, Lindsay DB, Barker PJ, Northrop AJ. Effect of insulin on hind limb and whole-body leucine and protein metabolism in fed and fasted lambs. Br J Nutr 1987, 58: 143-154.
  100. Wester TJ, Lobley GE, Birnie LM, Crompton LA, Brown DS, Buchan V, Calder AG, Milne E, Lomax MA. Effect of plasma insulin and branched-chain amino acids on skeletal muscle protein synthesis in fasted lambs. Br J Nutr 2004, 92: 401-409 [CrossRef] [PubMed].
  101. Longenbach JI, Heinrichs AJ. A review of the importance and physiological role of curd formation in the abomasum of young calves. Anim Feed Sci Technol 1997, 73: 85-97 [CrossRef].
  102. Grizard J, Toullec R, Guilloteau P, Patureau-Mirand P. Effect of the kinetics of gastric emptying of food on blood insulin levels in the preruminant calf. Reprod Nutr Dev 1982, 22: 475-484 [PubMed] (in French).
  103. Munro HN. Carbohydrate and fat as factors in protein utilization and metabolism. Physiol Rev 1951, 31: 449-488 [PubMed].
  104. Geiger E. The importance of the time element in feeding of growing rats. Experiments with delayed supplementation of protein. Science 1948, 108: 42-43.
  105. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Nat Acad Sci 1997, 94: 14930-14935.
  106. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballèvre O, Beaufrère B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol 2001, 280: E340-E348.
  107. Metges CC, El-Khoury AE, Selvaraj AB, Tsay RH, Atkinson A, Regan MM, Bequette BJ, Young VR. Kinetics of L-[1-13C]leucine when ingested with free amino acids, unlabeled or intrinsically labelled casein. Am J Physiol 2000, 278: E1000-E1009.
  108. Yen JT, Kerr BJ, Easter RA, Parkhurst AM. Difference in rates of net portal absorption between crystalline and protein-bound lysine and threonine in growing pigs fed once daily. J Anim Sci 2004, 82: 1079-1090 [PubMed].
  109. Batterham ES, Bayley HS. Effect of frequency of feeding of diets containing free or protein-bound lysine on the oxidation of [14C]lysine or [14C]phenylalanine by growing pigs. Br J Nutr 1989, 62: 647-655 [CrossRef] [PubMed].