Free Access
Issue
Reprod. Nutr. Dev.
Volume 45, Number 4, July-August 2005
Page(s) 485 - 496
DOI https://doi.org/10.1051/rnd:2005033
References of Reprod. Nutr. Dev. 45 485-496
  1. Mehrzad J, Desrosiers C, Lauzon K, Robitaille G, Zhao X. Lacasse P. Proteases involved in mammary tissue damage during endotoxin-induced mastitis in dairy cows. J Dairy Sci 2005, 88: 211-222 [PubMed].
  2. Le Roux Y, Colin O, Laurent F. Proteolysis in samples of quarters milk with varying somatic cell counts. 1. Comparison of some indicators of endogenous proteolysis in milk. J Dairy Sci 1995, 78: 1289-1297 [PubMed].
  3. Moussaoui F, Michelutti I, Le Roux Y, Laurent F. Mechanisms involved in milk endogenous proteolysis induced by lipopolysaccharide experimental mastitis. J Dairy Sci 2002, 85: 2562-2570 [PubMed].
  4. Moussaoui F, Laurent F, Girardet JM, Humbert G, Gaillard JL, Le Roux Y. Characterization and proteolytic origins of specific peptides appearing during lipopolysaccharide experimental mastitis. J Dairy Sci 2003, 86: 1163-1170 [PubMed].
  5. Larsen LB, Rasmussen MD, Bjerring M, Nielson JH. Proteases and protein degradation in milk from cows infected with Streptococcus uberis. Int Dairy J 2004, 14: 899-907.
  6. Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003, 14: 1317-1327.
  7. Considine T, Healy A, Kelly AL, McSweeney PLH. Proteolytic activity of elastase on bovine $\alpha$s1-casein. Food Chem 2000, 69: 19-26 [CrossRef].
  8. Richardson BC. Variation of the concentration of plasmin and plasminogen in bovine milk with lactation. Dairy Sci Technol 1983, 18: 209-220.
  9. Le bars D, Gripon JC. Hydrolysis of $\alpha$s1-casein by bovine plasmin. Lait 1993, 73: 337-344.
  10. Andrews AT. Breakdown of caseins by proteinases in bovine milks with high somatic cell counts arising from mastitis or infusion with bacterial endotoxin. J Dairy Res 1983, 50: 57-66 [PubMed].
  11. Bradley AJ. Bovine Mastitis: An evolving Disease. Vet J 2002, 163: 1-13 [CrossRef] [PubMed].
  12. Rozkov A, Enfors SO. Analysis and control of proteolysis of recombinant proteins in Escherichia coli. Adv Biochem Eng Biotechnol 2004, 89: 163-95.
  13. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem 1999, 274: 21491-21494 [CrossRef] [PubMed].
  14. Reynolds JJ. Collagenases and tissue inhibitors of metalloproteinases: a functional balance in tissue degradation. Oral Dis 1996, 2: 70-76 [PubMed].
  15. Shuster DE, Lee EK, Kehrli ME. Bacterial growth, inflammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within 10 days after calving, compared with cows at midlactation. Am J Vet Res 1996. 57: 1569-1575.
  16. Harmon RJ, Eberhardt RJ, Jasper DE, Langlois BE, Wilson RA. Microbiological procedures for the diagnosis of bovine udder infection. Natl Mastitis Concil Arlington, VA, 1990.
  17. Oussaoui F, Vangroenweghe F, Haddadi K, Le Roux Y, Laurent F, Duchateau L, Burvenich C. Proteolysis in milk during experimental Escherichia coli mastitis. J Dairy Sci 2004, 87: 2923-2931 [PubMed].
  18. Raulo SM, Sorsa T, Tervahartiala T, Latvanen T, Perila E, Hirvonen J, Maisi. Increase in milk metalloproteinase activity and vascular permeability in bovine endotoxin-induced and naturally occurring Escherichia coli mastitis. Vet Immunol Immunopathol 2002, 85: 137-145 [PubMed].
  19. Collin JC, Kokelaar A, Rollet-Repecaud O, Delacroix-Buchet A. Dosage des caséines du lait de vache par électrophorèse et par chromatographie liquide rapide d'échange d'ions (FPLC) : comparaison des résultats. Lait 1991, 71: 339-350.
  20. Laemmli UK, Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 1973, 80: 575-599 [CrossRef] [PubMed].
  21. Little RC, Milliken GA, Stroup WW. Wolfinger RD. SAS System for Mixed Models. Cary, NC: SAS Institute Inc, 1996, p 633.
  22. Kornalijnslijper JE, Daemen AJ, van Werven T, Niewold TA, Rutten VP, Noordhuizen-Stassen EN. Bacterial growth during the early phase of infection determines the severity of experimental Escherichia coli mastitis in dairy cows. Vet Microbiol 2004, 101: 177-186 [CrossRef] [PubMed].
  23. Fang W, Shi M, Huang L, Shao Q, Chen J. Growth of lactobacilli, Staphylococcus aureus and Escherichia coli in normal and mastitic milk and whey. Vet Microbiol 1993, 37: 115-125 [CrossRef] [PubMed].
  24. Maeda H, Okamoto T, Akaike T. Human matrix metalloprotease activation by insults of bacterial infection involving proteases and free radicals. J Biol Chem 1998, 379: 193-200.
  25. Driessen FM. Relationship between growth of Gram-negative rods in milk and their production of proteinases. Neth Milk Dairy J 1981, 35: 344-348.
  26. Blum JW, Dosogne H, Hoeben G, Vangroenweghe F, Hammon HM, Bruckmaier RM, Burvenich C. Tumor necrosis factor- and nitrite/nitrate responses during acute mastitis induced by Escherichia coli infection and endotoxin in dairy cows. Domest Anim Endocrinol 2000, 19: 223-235 [CrossRef] [PubMed].
  27. Mehrzad J, Duchateau L, Burvenich C. Viability of milk neutrophils and severity of bovine coliform mastitis. J Dairy Sci 2004, 87: 4150-4162 [PubMed].
  28. Riollet P, Rainard P, Poutrel B. Cinétiques de recrutement cellulaire et de multiplication bactérienne après infection. In: Journées Nationales GTV-INRA, Nantes, France, 1999, p 67-74.
  29. Van Hooijdonk AC, Kussendrager KD, Steijns JM. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. Br J Nutr 2000, 84: 127-134.
  30. Kaartinen L, Salonen EM, Vaheri A, Sandholm M. Activation of plasmin in mastitic milk. Acta Vet Scand 1988, 29: 485-491 [PubMed].
  31. Gugi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF. Effect of growth temperature on several export enzyme activities in psychrotrophic bacterium Pseudomonas fluorescens. J Bacteriol 1991, 173: 3814-3820.
  32. Bastian ED, Brown RJ. Plasmin in milk and dairy products: an update. Int Dairy J 1996, 6: 435-457 [CrossRef].
  33. Fajardo-Lira C, Nielsen SS. Effect of psychrotrophic microorganisms on the plasmin system in milk. J Dairy Sci 1998, 81: 901-908 [PubMed].
  34. Politis I, Barbano DM, Gorewit RC. Distribution of plasminogen and plasmin in fractions of bovine milk. J Dairy Sci 1992, 75: 1402-1410 [PubMed].
  35. Nickerson SC, Pankey JW. Neutrophils migration through teat and tissues of bovine mammary quarters experimentally challenged with Staphilococcus aureus. J Dairy Sci 1984, 67: 826-834.
  36. Lähteenmäki K, Kuusela P, Korhonen TK. Review article. Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 2001, 25: 531-552 [CrossRef] [PubMed].
  37. Aslam M, Hurley WL. Proteolysis of milk proteins during involution of the bovine mammary gland. J Dairy Sci 1997, 80: 2004-2010 [PubMed].
  38. Grieve PA, Kitchen BJ. Proteolysis in milk: the significance of proteinases originating from milk leukocytes and a comparison of the action of leukocyte, bacterial and natural milk proteinases on casein. J Dairy Sci 1985, 52: 101-112.
  39. Mattila-Sandholm T, Alivehmas T, Kaartinen L, Honkanen BT. Growth characteristics of Staphylococcus aureus and Escherichia coli in whey from sequentially infected milk. Acta Vet Scandinavica 1990, 31: 169-174.
  40. Michelutti I, Le Roux Y, Rainard P, Poutrel B, Laurent F. Sequential changes in milk protein composition after experimental Escherichia coli mastitis. Lait 1999, 79: 535-549.
  41. Le Roux Y, Laurent F, Moussaoui F. Polymorphonuclear proteolytic activity and milk composition change. Vet Res 2003, 34: 1-17.