Free Access
Issue
Reprod. Nutr. Dev.
Volume 46, Number 5, September-October 2006
5th annual INRA-Meeting: Mammary gland and milk
Page(s) 463 - 480
DOI https://doi.org/10.1051/rnd:2006032
Published online 23 September 2006
References of  Reprod. Nutr. Dev. 46 (2006) 463-480
  1. Dunlap JC. Molecular bases for circadian clocks. Cell 1999, 96: 271-290 [CrossRef] [PubMed].
  2. Harmer SL, Panda S, Kay SA. Molecular bases of circadian rhythms. Annu Rev Cell Dev Biol 2001, 17: 215-253 [CrossRef] [PubMed].
  3. Ladislas R. Les temps de la vie. Nouvelle Bibliothèque scientifique, éd Flammarion, 2002, pp 300.
  4. Moore-Ede MC. Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol 1986, 250: R735-R752.
  5. Boissin J, Canguilhem B. Les Rythmes du vivant. Origine et contrôle des rythmes biologiques. Éditions CNRS/Nathan, 1998, pp 320.
  6. Lévi F. From circadian rhythms to cancer chronotherapeutics. Chronobiol Int 2002, 19: 1-19 [CrossRef] [PubMed].
  7. Cho K. Chronic "jet lag" produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci 2001, 4: 567-568 [CrossRef] [PubMed].
  8. Comité consultatif de la médecine tropicale et de la médecine des voyages (CCMTMV). Syndrome du décalage horaire (Travel statement on Jetlag). Ministère de la santé du Canada, 2003, pp 4-8.
  9. Roenneberg T, Merrow M. Life before the clock: modeling circadian evolution. J Biol Rhythms 2002, 17: 495-505 [CrossRef] [PubMed].
  10. Geier F, Becker-Weiman S, Kramer A, Herzel H. Entrainment in a model of the mammalian circadian oscillator. J Biol Rhythms 2005, 20: 83-93 [CrossRef] [PubMed].
  11. Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci USA 2002, 99: 7728-7733 [CrossRef] [PubMed].
  12. Kaeffer B, Pardini L. Clock genes of mammalian cells: practical implications in tissue culture. In Vitro Cell Dev Biol Anim 2005 41: 311-320.
  13. Best JD, Maywood ES, Smith KL, Hasting MH. Rapid resetting of the mammalian circadian clock. J Neurosci 1999, 19: 828-835 [PubMed].
  14. Asai M, Yamaguchi S, Isejima H, Jonouchi M, Moriya T, Shibata S, Kobayashi M, Okamura H. Visualization of mPer1 transcription in vitro: NMDA induces a rapid phase shift of mPer1 gene in cultured SCN. Curr Biol 2001, 11: 1524-1527 [CrossRef] [PubMed].
  15. Jewett ME, Rimmer DW, Duffy JF, Klerman EB, Kronauer RE, Czeisler CA. Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. Am. J. Physiol. 1997, 273: R1800-R1809.
  16. Duffy JF, Wright KP Jr. Entrainment of the human circadian system by light. J Biol Rhythms 2005, 20: 326-338 [CrossRef] [PubMed].
  17. King D, Zhao Y, Sangoram A, Wilsbacher L, Tanaka M, Antoch M, Steeves T, Vitaterna M, Kornhauser J, Lowrey P, Turek F, Takahashi J. Positional cloning of the mouse circadian clock gene. Cell 1997, 89: 641-653 [CrossRef] [PubMed].
  18. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998, 280: 1564-1569 [CrossRef].
  19. Reick M, Garcia JA, Dudley C, McKnight SL. NPAS2: an analog of Clock operative in the mammalian forebrain. Science 2001, 293: 506-509 [CrossRef].
  20. Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 1998, 95: 5474-5479 [CrossRef] [PubMed].
  21. Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. Circadian clock control by SUMOylation of BMAL1. Science 2005, 309: 1390-1394 [CrossRef].
  22. Sun Z, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC. RIGUI a putative mammalian ortholog of the drosophila period gene. Cell 1997, 90: 1003-1011 [CrossRef] [PubMed].
  23. Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 1997, 389: 512-516 [CrossRef] [PubMed].
  24. Albrecht U, Sun ZS, Eichele G, Lee CC. A differential response of two putative mammalian circadian regulators mper1 and mper2, to light. Cell 1997, 91: 1055-1064 [CrossRef] [PubMed].
  25. Shearman L, Zylka M, Weaver D, Kolakowki L Jr, Reppet S. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 1997, 19: 1261-1269 [CrossRef] [PubMed].
  26. Zylka MJ, Shearman LP, Weaver DR, Reppert SM. Three period homologs in mammals: differential light responses in the suprachiamatic circadian clock and oscillating transcripts outside of brain. Neuron 1998, 20: 1103-1110 [CrossRef] [PubMed].
  27. Van der Horst G, Muijtjens M, Kobayashi K, Takano R, Kanno S-I, Takao M, de Wit J, Verkerk A, Eker A, van Leenen D, Buijs R, Bootsma D, Hoeijmakers J, Yasui A. Mammalian cry1 and cry2 are essential for maintenance of circadian rhythms. Nature 1999, 398: 627-630 [CrossRef] [PubMed].
  28. Griffin EA Jr, Staknis D, Weitz CJ. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 1999, 286: 768-771 [CrossRef].
  29. Kume K, Zylka M, Sriram S, Shearman L, Weaver D, Jin X, Maywood E, Hasting M, Reppert S. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999, 98: 193-205 [CrossRef] [PubMed].
  30. Brown SA, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, Rosbash M, Schibler U. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 2005, 308: 693-696 [CrossRef].
  31. Shearman L, Sriram S, Weaver D, Maywood E, Chaves I, Zheng B, Kume K, Lee C, van der Horst G, Hastings M, Reppert S. Interacting molecular loops in the mammalian circadian clock. Science 2000, 288: 1013-1019 [CrossRef].
  32. Vielhaber E, Eide E, Rivers A, Gao Z-H, Virshup D. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol 2000, 20: 4888-4899 [CrossRef] [PubMed].
  33. Camacho F, Cilio M, Guo Y, Virshup DM, Patel K, Khorkova O, Styren S, Morse B, Yao Z, Keesler GA. Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett 2001, 489: 159-165 [CrossRef] [PubMed].
  34. Eide EJ, Vielhaber EL, Hinz WA, Virshup DM. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase I epsilon. J Biol Chem 2002, 277: 17248-17254 [CrossRef] [PubMed].
  35. Akashi M, Tsuchiya Y, Yoshino T, Nishida E. Control of intracellular dynamics of mammalian Period proteins by casein kinase I epsilon (CKIe) and CKIdelta in cultured cells. Mol Cell Biol 2002, 22: 1693-1703 [CrossRef] [PubMed].
  36. Lee C, Weaver D, Reppert SM. Direct association between mouse PERIOD and CKIepsilon is critical for a functioning circadian clock. Mol Cell Biol 2004, 24: 584-594 [CrossRef] [PubMed].
  37. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Nalk KA, FitzGerald GA, Kay SA, Hogenesch JB. A functional genomics strategy reveals Rora as a component of the Mammalian circadian clock. Neuron 2004, 43: 527-537 [CrossRef] [PubMed].
  38. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002, 110: 251-260 [CrossRef] [PubMed].
  39. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 2002, 419: 841-844 [CrossRef] [PubMed].
  40. Hamaguchi H, Fujimoto K, Kawamoto T, Noshiro M, Maemura K, Takeda N, Nagai R, Furukawa M, Honma S, Honma K, Kurihara H. Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Biochem J 2004, 382: 43-50 [CrossRef] [PubMed].
  41. Sato F, Kawamoto T, Fujimoto K, Noshiro M, Honda KK, Honma S, Honma K, Kato Y. Functional analysis of the basic helix-loop-helix transcription factor DEC1 in circadian regulation. Eur J Biochem 2004, 271: 4409-4419 [CrossRef] [PubMed].
  42. Kornmann B, Preitner N, Rifat D, Fleury-Olela F, Schibler U. Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res 2001, 29: E51-1 [CrossRef] [PubMed].
  43. Storch K-F, Lipian O, Leykin I, Viswanathan N, Davis F, Wong W, Weitz C. Extensive and divergent circadian expression in liver and heart. Nature 2002, 417: 78-83 [CrossRef] [PubMed].
  44. Ueda H, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahalma K-I, Suzuki Y, Shigeyoshi Y, Hashimoto S A transcriptional factor response element for gene expression during circadian night. Nature 2002, 418: 534-538.
  45. Panda S, Antoch M, Miller B, Su A, Schook A, Schultz P, Kay S, Takahashi J, Hogenesh J. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109: 307-320 [CrossRef] [PubMed].
  46. Duffield GE. DNA Microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 2003, 15: 991-1002 [CrossRef] [PubMed].
  47. Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiamastic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun 1998, 253: 199-203 [CrossRef] [PubMed].
  48. Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Humoral signals mediate the circadian expression of rat period homologue (rPer2) mRNA in peripheral tissues. Neurosci Lett 1998, 256: 117-119 [CrossRef] [PubMed].
  49. Oishi K, Miyasaki K, Kadoka K, Kikuno R, Nagase T, Atsumi G-I, Ohkura N, Azama T, Mesaki M, Yukimasa S, Kobayashi H, Iitaka C, Umehara T, Horikoshi Y, Kudo T, Shimizu Y, Yano M; Monden M, Machida K, Matsuda J, Horie S, Todo T, Ishida N. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian ouput genes. J Biol Chem 2003, 42: 41519-41527.
  50. Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 2001, 30: 525-536 [CrossRef] [PubMed].
  51. Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A. The mPER2 gene encodes a functional component of the mammalian circadian clock. Nature 1999, 400: 169-173 [CrossRef] [PubMed].
  52. Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun Z S, Eichele G, Bradley A, Lee C C. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 2001, 105: 683-694 [CrossRef] [PubMed].
  53. Lee C, Etchegaray J-P, Cagampang FRA, Loudon ASI, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001, 107: 855-867 [CrossRef] [PubMed].
  54. Yu W, Nomura M, Ikeda M. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1 CRY2 and PER2. Biochem Biophys Res Commun 2002, 290: 933-941 [CrossRef] [PubMed].
  55. Fu L, Pelicano H, Liu J, Huang P, Lee CC. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002, 111: 41-50 [CrossRef] [PubMed].
  56. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell 2005, 122: 803-815 [CrossRef] [PubMed].
  57. Motzkus D, Maronde E, Grunenberg U, Lee C, Forssmann W-G, Albrecht U. The human PER1 gene is transcriptionally regulated by multiple signaling pathways. FEBS Lett 2000, 486: 315-319 [CrossRef] [PubMed].
  58. Motzkus D, Albrecht U, Maronde E. The human PER1 gene is inductible by interleukin-6. J Mol Neurosci 2002, 218: 105-109.
  59. Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K, Yasuda A, Mamine T, Takumi T. Acute physical stress elevates mouse Period1 mRNA expression in mouse peripheral tissues via a Glucocorticoid-responsive element. J Biol Chem 2005, 280: 42036-42043 [CrossRef] [PubMed].
  60. Brown SA, Fleury-Olela F, Nagoshi E, Hauser C, Juge C, Meier CA, Chicheportiche R, Dayer J-M, Schibler U. The Period length of fibroblast circadian gene expression varies widely among human individuals. PLOS Biology 2005, 3: 1813-1818.
  61. Scheving LA. Biological clocks and the digestive system. Gastroenterology 2000, 119: 536-549 [CrossRef] [PubMed].
  62. Rivkees SA. Developing circadian rhythmicity in infants. Pediatrics 2003, 112: 373-381 [CrossRef] [PubMed].
  63. Seron-Ferré M, Torres C, Parraguez VH, Vergara M, Valladares L, Forcelledo ML, Constandil L, Valenzuela GJ. Perinatal neuroendocrine regulation. Development of the circadian time-keeping system. Mol Cell Endocrinol 2002, 186: 169-173 [CrossRef] [PubMed].
  64. Weinert D. Ontogenetic development of the mammalian circadian system. Chronobiol Int 2005, 22: 179-205 [CrossRef] [PubMed].
  65. Yan L, Takekida S, Shigeyoshi Y, Okamura H. Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 1999, 94: 141-150 [CrossRef] [PubMed].
  66. Sladek M, Sumova A, Kovacikova Z, Bendova Z, Laurinova K, Illnerova H. Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci USA 2004, 101: 6231-6236 [CrossRef] [PubMed].
  67. Hastings MH, Herzog ED. Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms 2004, 19: 400-413 [CrossRef] [PubMed].
  68. La Fleur SE. Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J Neuroendocrinol 2003, 15: 315-322 [CrossRef] [PubMed].
  69. Oishi K, Fukui H, Sakamoto K, Miyazaki K, Kobayashi H, Ishida N. Differential expression of mPer1 and mPer2 mRNAs under a skeleton photoperiod and a complete light-dark cycle. Mol Brain Res 2002, 109: 11-17 [CrossRef].
  70. Barinaga M. Setting the human clock: technique challenged. Science 2002, 297: 505 [CrossRef].
  71. Pando MP, Morse D, Cermakian N, Sassone-Corsi P. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 2002, 110: 107-117 [CrossRef] [PubMed].
  72. Balsalobre A, Marcacci L, Schibler U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 2000, 10: 1291-1294 [CrossRef] [PubMed].
  73. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendock C, Reichardt HM, Schütz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000, 289: 2344-2347 [CrossRef].
  74. McNamara P, Seo S-B, Rudi R, Seghal A, Chakravarti G. Regulation of CLOCK and MOP4 by nuclear hormone receptor in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 2001, 105: 877-889 [CrossRef] [PubMed].
  75. Pévet P. Identification d'un nouveau signal de l'horloge circadienne chez les mammifères: le TGF-alpha. Médecine/Science 2002, 18: 1103-1106.
  76. Kramer A, Yang F-C, Snodgrass P, Li X, Scammell T, Davis F, Weitz C. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Novartis Foundation Symp 2003, 253: 250-262.
  77. Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou Q-Y. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 2002, 417: 405-410 [CrossRef] [PubMed].
  78. Kita Y, Shiozawa M, Jin W, Majewski R, Besharse J, Greene A, Jacob H. Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 2002, 12: 55-65 [CrossRef] [PubMed].
  79. Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 2001, 20: 7128-7136 [CrossRef] [PubMed].
  80. Yagita K, Tamanini F, van der Horst G, Okamura H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 2001 292: 278-281.
  81. Reppert S, Weaver R. Coordination of circadian timing in mammals. Nature 2002, 418: 935-941 [CrossRef] [PubMed].
  82. Davidson AJ, Poole AS, Yamazaki S, Menaker M. Is the food-entrainable circadian oscillator in the digestive system? Genes Brain Behav 2003, 2: 32-39 [CrossRef] [PubMed].
  83. Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell 2002, 111: 919-922 [CrossRef] [PubMed].
  84. Schibler U, Ripperger J, Brown SA. Peripheral circadian oscillators in Mammals: time and food. J Biol Rhythms 2003, 18: 250-260 [CrossRef] [PubMed].
  85. Bjarnason GA, Jordan RCK, Wood PA, Li Q, Lincoln DW, Sothern RB, Hrushesky WJM, Ben-David Y. Circadian expression of clock genes in human oral mucosa and skin. Association with specific cell-cycle phases. Am J Pathol 2001, 158: 1793-1801 [PubMed].
  86. Sakamoto K, Nagase T, Fukui H, Horikawa K, Okada T, Tanaka H, Sato K, Miyake Y, Ohara O, Kako K, Ishida N. Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock the suprachiasmatic nucleus in the brain. J Biol Chem 1998, 273: 27039-27042 [CrossRef] [PubMed].
  87. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schiebler U. Restricted feeding uncouples circadien oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000, 14: 2950-2961 [CrossRef] [PubMed].
  88. Pardini L, Kaeffer B, Trubuil A, Bourreille A, Galmiche J-P, Cherbut C. Period-1 and Period-2 protein expression by human colonocytes. 1st World Congress on Chronobiology, September 9-12, 2003, Sapporo, Japan.
  89. Pardini L, Kaeffer B, Trubuil A, Bourreille A, Galmiche J-P. Human intestinal circadian clock: expression of clock genes in colonocytes lining the crypt. Chronobiol Int, 2005, 6: 951-961.
  90. Buchi KN, Moore JG, Hrushesky WJM, Sothern RB, Rubin NH. Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 1991, 101: 410-415 [PubMed].
  91. Marra G, Anti M, Percesepe A, Armelao F, Ficarelli R, Coco C, Rinelli A, Vecchio FM, D'Arcangelo E. Circadian variations of epithelial cell proliferation in human rectal crypts. Gastroenterology 1994, 106: 982-987 [PubMed].
  92. Qiu JM, Roberts SA, Potten CS. Cell migration in the small and large bowel shows a strong circadian rhythm. Epithelial Cell Biol 1994, 3: 137-148 [PubMed].
  93. Iwakiri R, Gotoh Y, Noda T, Sugihara H, Fujimoto K, Fuseler J, Aw TY. Programmed cell death in rat intestine: effect of feeding and fasting. Scand J Gastroenterol 2001, 36: 39-47 [CrossRef] [PubMed].
  94. Abizaid A, Mezei G, Sotonyi P, Horvath TL. Sex differences in adult suprachiamastic nucleus neurons emerging late prenatally in rats. Eur J Neurosci 2004, 19: 2488-2490 [CrossRef] [PubMed].
  95. Carskadon MA, Wolfson AR, Acebo C, Tzischinsky O, Seifer R. Adolescent sleep patterns, circadian timing, and sleepiness at a transition to early school days. Sleep 1998, 21: 871-881 [PubMed].
  96. Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD. Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci USA 2002, 99: 10801-10806 [CrossRef] [PubMed].
  97. Claustrat F, Fournier I, Geelen G, Brun J, Corman B, Claustrat B. Vieillissement et expressions des gènes de l'horloge circadienne dans les tissus périphériques chez le rat. Aging and circadian clock gene expression in peripheral tissues in rats. Pathol Biol 2005, 318: 1-4.
  98. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk D-J, Kronauer RE. Stability, precision, and near-24-h period of the human circadian pacemaker. Science 1999, 284: 2177-2181 [CrossRef].
  99. Ruby NF, Burns DE, Heller HC. Circadian rhythms in the suprachiasmatic nucleus are temperature-compensated and phase-shifted by heat pulses in vitro. J Neurosci 1999, 19: 8630-8636 [PubMed].
  100. Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 2002, 12: 1574-1583 [CrossRef] [PubMed].
  101. Tsuchiya Y, Akashi M, Nishida E. Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts. Genes Cells 2003, 8: 713-720 [CrossRef] [PubMed].
  102. Johnson B. Nutrient intake as a time signal for circadian rhythm. J Nutr 1992, 122: 1753-1759 [PubMed].
  103. Stephan K. The "other" circadian system: food as zeitgeber. J Biol Rhythms 2002, 17: 284-292 [CrossRef] [PubMed].
  104. Reinberg A, Portero P, Libert J-P. Chronobiologie veille-sommeil et nutrition. Lettre Scientifique de l'IFN, Juin 1995, p 36.
  105. Stephan FK. Calories affect zeitgeber properties of the feeding entrained circadian oscillator. Physiol Behav 1997, 62: 995-1002 [CrossRef] [PubMed].
  106. Davidson AJ, Aragona BJ, Werner RM, Schroeder E, Smith JC, Stephan FK. Food-anticipatory activity persists after olfactory bulb ablation in the rat. Physiol Behav 2001, 72: 231-235 [CrossRef] [PubMed].
  107. Mistleberger RE, Skene DJ. Social influences on mammalian circadian rhythms: animal and human studies. Biol. Rev. 2004, 79: 533-556.
  108. Challet E, Malan A, Pévet P. Daily hypocaloric feeding entrains circadian rhythms of wheel-running and body temperature in rats kept in constant darkness. Neurosci Lett 1996, 211: 1-4 [CrossRef] [PubMed].
  109. Lax P, Zamora S, Madrid J. Food-entrained feeding and locomotor circadian rhythms in rats under different lighting conditions. Chronobiol Int 1999, 16: 281-291 [PubMed].
  110. Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 2001, 6: 269-278 [CrossRef] [PubMed].
  111. Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S. Restricted-feeding-induced anticipatory activity rhythm is associated with phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci 2001, 13: 1190-1196 [CrossRef] [PubMed].
  112. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 2001, 291: 490-493 [CrossRef].
  113. Davidson AJ, Stephan FK. Circadian food anticipation persists in capsaicin deafferented rats. J Biol Rhythms 1998, 13: 422-429 [CrossRef] [PubMed].
  114. Pitts SN, Perrone E, Silver R. Food-entrained circadian rhythms are sustained in arrhythmic clk/clk mutant mice. Am J Physiol (Regulatory Integrative and Comparative Physiology) 2003, 285: R57-R67.
  115. Miki H, Yano M, Iwanaga H, Tsujinaka T, Nakayama M, Kobayashi M, Oishi K, Shiozaki H, Ishida N, Nagai K, Monden M. Total parenteral nutrition entrains the central and peripheral circadian clocks. NeuroReport 2003, 14: 1457-1461 [CrossRef] [PubMed].
  116. Reinberg A, Chaumont A, Laporte A. Étude chronobiologique des changements d'horaires du travail (autométrie de 20 sujets postés: système des $3 \times 8$ à rotation hebdomadaire). Arch Mal Prof 1973, 35: 373-394.
  117. Iraki L, Bogdan A, Hakkou F, Amrani N, Abkari A, Touitou Y. Ramadan diet restriction modify the circadian time structure in humans. A study on plasma gastrin insulin glucose and calcium and on gastric pH. J Clin Endocrinol Metab 1997, 82: 1261-1273 [CrossRef] [PubMed].
  118. Bogdan A, Bouchareb B, Touitou Y. Ramadan fasting alters endocrine and neuroendocrine circadian patterns. Meal-time as a synchronizer in humans? Life Sciences 2001, 68: 1607-1615.
  119. Krauchi K, Cajochen C, Werth E, Wirz-Justice A. Alteration of internal circadian phase relationships after morning versus evening carbohydrate-rich meals in humans. J Biol Rhythms 2002, 17: 364-376 [CrossRef] [PubMed].
  120. Kolker DE, Losee Olson S, Dutton-Bollek J, Bennett KM, Wallen EP, Horton TH, Turek FW. Feeding melatonin enhances the phase shifting response to triazolam in both young and old golden hamsters. Am J Physiol 2002, 282: R1382-R1388.
  121. Mendoza J, Graff C, Dardente H, Pévet P, Challet E. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to light/dark cycle. J Neurosci 2005, 25: 1514-1522 [CrossRef] [PubMed].
  122. Challet E, Solberg L, Turek F. Entrainment in calorie-restricted mice: conflicting zeitgebers and free-running conditions. Am J Physiol 274 1998, 274: R1751-R1761.
  123. Stephan FK, Davidson AJ. Glucose but not fat phase shifts the feeding-entrained circadian clock. Physiol Behav 1998, 65: 277-288 [CrossRef] [PubMed].
  124. Challet E, Kolker DE, Turek FW. Metabolic influences on circadian rhythmicity in Siberian and Syrian hamsters exposed to long photoperiods. J Neuroendocrinol 2000, 12: 69-78 [CrossRef] [PubMed].
  125. Challet E, Pévet P, Vivien-Roels B, Malan A. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. J Biol Rhythms 1997, 12: 65-79 [PubMed].
  126. Challet E, Caldelas I, Graff C, Pévet P. Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol Chem 2003, 384: 711-719 [CrossRef] [PubMed].
  127. Challet E, Takahashi JS, Turek FW. Nonphotic phase-shifting in clock mutant mice. Brain Res 2000, 859: 398-403 [CrossRef] [PubMed].
  128. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. Obesity and metabolic syndrome in circadian clock mutant mice. Science 2005, 308: 1043-1045 [CrossRef]
  129. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings M, Kyriacou CP. Circadian cycling of the mouse liver transcriptome as revealed by cDNA microarray is driven by the suprachiasmatic nucleus. Curr Biol 2002, 12: 540-550 [CrossRef] [PubMed].
  130. Challet E, Losee-Olson S, Turek F. Reduced glucose availability attenuates circadian responses to light in mice. Am J Physiol 1999, 276: R1063-R1070 [PubMed].
  131. Rutter J, Reick M, Wu L C, McKnight S L. Regulation of Clock and NPAS2 DNA binding by the Redox state of NAD cofactors. Science 2001, 293: 510-514 [CrossRef].
  132. Rutter J, Reick M, McKnight S L. Metabolism and the control of circadian rhythms. Annu Rev Biochem 2002, 71: 307-331 [CrossRef] [PubMed].
  133. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukuda Y. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. The J Biol Chem 2002, 277: 44244-44251.
  134. Pardini L, Kaeffer B, Trubuil A, Bourreille A. Serum-induced expression of proteins regulating the circadian rhythm in human colon cancer cell lines: implications for primary culture. World Congress on In Vitro Biology 2004, Abstract issue, VT-1006.
  135. Cherbuy C, Darcy-Vrillon B, Morel M-T, Pégorier J-P, Duée P-H. Effect of germ-free state on the capacities of isolated rat colonocytes to metabolize n-butyrate, glucose, and glutamine. Gastroenterology 1995, 109: 1890-1899 [CrossRef] [PubMed].
  136. Le Bacquer O, Laboisse C, Darmaun D. Glutamine preserves protein synthesis and paracellular permeability in CaCo-2 cells submitted to "luminal fasting". Am J Physiol Gastrointest Liver Physiol 2003, 285: G1-G9 [PubMed].
  137. Toh K, Jones C, He Y, Eide E, Hinz W, Virshup D, Ptacek L, Fu Y. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291: 1040-1043 [CrossRef].
  138. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu Y-H. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434: 640-644 [CrossRef] [PubMed].
  139. Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M, Watanabe T, Sekimoto M, Shibui K, Kim K, Kudo Y, Ozeki Y, Sugishita M, Toyoshima R, Inoue Y, Yamada N, Nagase T, Ozaki N, Ohara O, Ishida N, Okawa M, Takahashi K, Yamauchi T. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO report 2001, 2: 342-346 [CrossRef].
  140. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, von Schantz M. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 2003, 26: 413-415 [PubMed].
  141. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E. A CLOCK polymorphism associated with human diurnal preference. Sleep 1998, 21: 569-576 [PubMed].
  142. Kennaway DJ. Programming of the fetal suprachiasmatic nucleus and subsequent adult rhythmicity. Trends Endocrinol Metab 2002, 13: 398-402 [PubMed].
  143. Rajaratnam S, Arendt J. Health in a 24-h society. Lancet 2001, 358: 999-1005 [CrossRef] [PubMed].
  144. Kawamura H, Ibuka N. The search for circadian rhythm pacemarkers in the light of lesion. Chronobiologia 1978, 5: 69-88 [PubMed].
  145. Nagai K, Nishio T, Nakagawa H, Nakamura S, Fukuda Y. Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake. Brain Res 1978, 142: 384-389 [CrossRef] [PubMed].
  146. Nishio T, Shiosaka S, Nakagawa H, Sakumuto T, Satoh K. Circadian feeding rhythm after hypothalamic knife-cut isolating suprachiasmatic nucleus. Physiol Behav 1979, 23: 763-769 [CrossRef] [PubMed].
  147. Boulos Z, Rosenwasser AM, Terman M. Feeding schedules and the circadian organization of behaviour in the rat. Brain Res 1980, 1: 39-56.
  148. Füller CA, Sulzman FM, Moore-Ede MC. Role of heat loss and heat production in generation of the circadian temperature rhythm of the squirrel monkey. Physiol Behav 1985, 34: 543-546 [CrossRef] [PubMed].
  149. Fu Y, Zhong H, Wang MHH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ, Yau KW. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci USA 2005, 102: 10339-10344 [CrossRef] [PubMed].