Free Access
Reprod. Nutr. Dev.
Volume 46, Number 2, March-April 2006
Page(s) 179 - 187
Published online 06 April 2006
References of Reprod. Nutr. Dev. 46 179-187
  1. Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 1995, 75: 725-748 [PubMed].
  2. Soderling SH, Beavo JA. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 2000, 12: 174-179 [CrossRef] [PubMed].
  3. Michaeli T, Bloom TJ, Martins T, Loughney K, Ferguson K, Riggs M, Rodgers L, Beavo JA, Wigler M. Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J Biol Chem 1993, 268: 12925-12932.
  4. Jin SL, Richard FJ, Kuo WP, D'Ercole AJ, Conti M. Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc Natl Acad Sci USA 1999, 96: 11998-12003 [CrossRef] [PubMed].
  5. Park JY, Richard F, Chun SY, Park JH, Law E, Horner K, Jin SL, Conti M. Phosphodiesterase regulation is critical for the differentiation and pattern of gene expression in granulosa cells of the ovarian follicle. Mol Endocrinol 2003, 17: 1117-1130 [CrossRef] [PubMed].
  6. Crossthwaite AJ, Valli H, Williams RJ. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones. J Neurochem 2004, 88: 1127-1139 [CrossRef] [PubMed].
  7. Filippa N, Sable CL, Filloux C, Hemmings B, Van Obberghen E. Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol 1999, 19: 4989-5000 [PubMed].
  8. Mei FC, Qiao J, Tsygankova OM, Meinkoth JL, Quilliam LA, Cheng X. Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J Biol Chem 2002, 277: 11497-11504 [CrossRef] [PubMed].
  9. Ishimaru RS, Leung K, Hong L, LaPolt PS. Inhibitory effects of nitric oxide on estrogen production and cAMP levels in rat granulosa cell cultures. J Endocrinol 2001, 168: 249-255 [CrossRef] [PubMed].
  10. LaPolt PS, Hong LS. Inhibitory effects of superoxide dismutase and cyclic guanosine 3',5'-monophosphate on estrogen production in cultured rat granulosa cells. Endocrinology 1995, 1362: 5533-5539 [CrossRef].
  11. Ignarro LJ. Signal transduction mechanisms involving nitric oxide. Biochem Pharm 1991, 41: 485-490 [CrossRef].
  12. Bredt DS, Snyder SH. Nitric oxide: a physiological messenger molecule. Ann Rev Biochem 1994, 63: 175-195.
  13. Shi F, Stewart RL, Perez E, Chen JY, LaPolt PS. Cell-specific expression and regulation of soluble guanylyl cyclase alpha and beta subunits in the rat ovary. Biol Reprod 2004, 70: 1552-1561 [CrossRef] [PubMed].
  14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248-254 [CrossRef] [PubMed].
  15. Liu G, Shi F, Blas-Machado U, Duong Q, Davis VL, Foster WG, Hughes CL. Ovarian effects of high lactose diet in the female rat. Reprod Nutr Dev 2005, 45: 185-192 [EDP Sciences] [CrossRef] [PubMed].
  16. Shi F, Mochida K, Matsuda J, Ogura A, Suzuki O, Ozawa M, Watanabe G, Suzuki AK, Taya K. Ovarian localization of immunoglobulin G and inhibin alpha-subunit in guinea pigs following passive immunization against the inhibin alpha-subunit. J Reprod Dev 2000, 46: 293-299 [CrossRef].
  17. Shi F, Ozawa M, Komura H, Yang P, Trewin AL, Hutz RJ, Watanabe G, Taya K. Secretion of ovarian inhibin and its physiologic roles in the regulation of follicle-stimulating hormone secretion during the estrous cycle of the female guinea pig. Biol Reprod 1999, 60: 78-84 [CrossRef] [PubMed].
  18. Shi F, Zhan Y, Ruan H, Hong Q, Xu Z. Studies on the mechanism of network of immune-neuroendocrine interaction against infectious bursal disease virus in broilers. Chinese J Vet Sci 1996, 16: 333-337 (in Chinese).
  19. Thompson JW, Appleman MM. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry 1971, 10: 311-315 [CrossRef] [PubMed]
  20. Rob JZ, Jennifer KW. Effects of hepatocyte growth factor on cyclic nucleotide-dependent signaling and steroidogenesis in rat ovarian granulosa cells in vitro. Biol Reprod 2002, 67: 454-459 [CrossRef] [PubMed].
  21. Beard MB, Olsen AE, Jones RE, Erdogan S, Houslay MD, Bolger GB. UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions. J Biol Chem 2000, 275: 10349-10358 [CrossRef] [PubMed].
  22. Bolger GB. Molecular biology of the cyclic AMP-specific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes. Cell Signal 1994, 6: 851-859 [CrossRef] [PubMed].
  23. Hill EV, Houslay MD, Baillie GS. Investigation of extracellular signal-regulated kinase 2 mitogen-activated protein kinase phosphorylation and regulation of activity of PDE4 cyclic adenosine monophosphate-specific phosphodiesterases. Methods Mol Biol 2005, 307: 225-237 [PubMed].
  24. MacKenzie SJ, Baillie GS, McPhee I, Bolger GB, Houslay MD. ERK2 mitogen-activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. The involvement of COOH-terminal docking sites and NH2-terminal UCR regions. J Biol Chem 2000, 275: 16609-16617 [CrossRef] [PubMed].
  25. Richter W, Conti M. Dimerization of the type 4 cAMP-specific phosphodiesterases is mediumted by the upstream conserved regions (UCRs). J Biol Chem 2002, 277: 40212-40221 [CrossRef] [PubMed].
  26. McKenna SD, Pietropaolo M, Tos EG, Clark A, Fischer D, Kagan D, Bao B, Chedrese PJ, Palmer S. Pharmacological inhibition of phosphodiesterase 4 triggers ovulation in follicle-stimulating hormone-primed rats. Endocrinology 2005, 146: 208-214 [CrossRef] [PubMed].
  27. Thomas RE, Armstrong DT, Gilchrist RB. Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation. Dev Biol 2002, 244: 215-225 [CrossRef] [PubMed].
  28. Tsafriri A, Chun SY, Zhang R, Hsueh AJ, Conti M. Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev Biol 1996, 178: 393-402 [CrossRef] [PubMed].
  29. Kofinas AD, Rose JC, Koritnik DR, Meis PJ. Progesterone and estradiol concentrations in nonpregnant and pregnant human myometrium: Effect of progesterone and estradiol on cyclic adenosine monophosphate-phosphodiesterase activity. J Reprod Med 1990, 35: 1045-1050 [PubMed].
  30. Lacasa D, Agli B, Giudicelli Y. Hormonal activation of the cGMP-inhibited low-Km cyclic AMP phosphodiesterase of rat adipocytes from different sites: influence of ovariectomy. Biochim Biophys Acta 1992, 1136: 99-104 [PubMed].
  31. Zachow RJ, Woolery JK. Effects of hepatocyte growth factor on cyclic nucleotide-dependent signaling and steroidogenesis in rat ovarian granulosa cells in vitro. Biol Reprod 2002, 67: 454-459 [CrossRef] [PubMed].
  32. Hemmings BA. Akt signaling: linking membrane events to life and death decisions. Science 1997, 275: 628-630 [CrossRef].
  33. Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediumtor of phosphatidylinositol 3-kinase activation. Biochem J 1998, 335: 1-13 [PubMed].
  34. Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 2000, 14:1283-1300.
  35. Richards JS, Sharma SC, Falender AE, Lo YH. Expression of FKHR, FKHRL1, and AFX genes in the rodent ovary: evidence for regulation by IGF-I, estrogen, and the gonadotropins. Mol Endocrinol 2002, 16: 580-599 [CrossRef] [PubMed].