Free Access
Issue |
Reprod. Nutr. Dev.
Volume 45, Number 5, September-October 2005
|
|
---|---|---|
Page(s) | 633 - 646 | |
DOI | https://doi.org/10.1051/rnd:2005050 |
References of Reprod. Nutr. Dev. 45 633-646
- Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health implications. Int J Dev Neurosci 2000, 18: 383-399 [CrossRef] [PubMed].
- Garcia MC, Ward G, Ma YC, Salem N, Kim HY. Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain in microsomes and C6 glioma cells. J Neurochem 1998, 70: 24-30 [PubMed].
- Farooqui AA, Horrocks LA, Farooqui T. Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 2000, 106: 1-29 [CrossRef] [PubMed].
- Yao JK, van Kammen DP. Membrane phospholipids and cytokine interaction in schizophrenia. Int Rev Neurobiol 2004, 59: 297-326 [PubMed].
- Jump DB. The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem 2002, 277: 8755-8758 [CrossRef] [PubMed].
- Baethmann A, Maier-Hauff K, Schurer L, Lange M, Guggenbichler C, Vogt W, Jacob K, Kempski O. Release of glutamate and of free fatty acids in vasogenic brain edema. J Neurosurg 1989, 70: 578-591 [PubMed].
- Siesjo BK, Ingvar M, Westerberg E. The influence of bicuculline-induced seizures on free fatty acid concentrations in cerebral cortex, hippocampus, and cerebellum. J Neurochem 1982, 39: 796-802 [PubMed].
- Yoshida S, Inoh S, Asano T, Sano K, Kubota M, Shimazaki H, Ueta N. Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. Lipid peroxidation as a possible cause of postischemic injury. J Neurosurg 1980, 53: 323-331 [PubMed].
- Wolfe LS. Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J Neurochem 1982, 38: 1-14 [PubMed].
- Katsuki H, Okuda S. Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 1995, 46: 607-636 [CrossRef] [PubMed].
- Phillis JW, Diaz FG, O'Regan MH, Pilitsis JG. Effects of immunosuppressants, calcineurin inhibition, and blockade of endoplasmic reticulum calcium channels on free fatty acid efflux from the ischemic/reperfused rat cerebral cortex. Brain Res 2002, 957: 12-24 [CrossRef] [PubMed].
- Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M. Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 2000, 19: 1784-1793 [CrossRef] [PubMed].
- Kim HY, Akbar M, Kim KY. Inhibition of neuronal apoptosis by polyunsaturated fatty acids. J Mol Neurosci 2001, 16: 223-227 [PubMed]; discussion 279-284.
- Peet M. Eicosapentaenoic acid in the treatment of schizophrenia and depression: rationale and preliminary double-blind clinical trial results. Prostaglandins Leukot Essent Fatty Acids 2003, 69: 477-485 [CrossRef] [PubMed].
- Folley BS, Doop ML, Park S. Psychoses and creativity: is the missing link a biological mechanism related to phospholipids turnover? Prostaglandins Leukot Essent Fatty Acids 2003, 69: 467-476 [CrossRef] [PubMed].
- Kudo I, Murakami M. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat 2002, 68-69: 3-58 [PubMed].
- Hirabayashi T, Murayama T, Shimizu T. Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol Pharm Bull 2004, 27: 1168-1173 [CrossRef] [PubMed].
- Ackermann EJ, Kempner ES, Dennis EA. Ca2+-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. J Biol Chem 1994, 269: 9227-9233 [PubMed].
- Mancuso DJ, Jenkins CM, Gross RW. The genomic organization, complete mRNA sequence, cloning, and expression of a novel human intracellular membrane-associated calcium-independent phospholipase A(2). J Biol Chem 2000, 275: 9937-9945 [CrossRef] [PubMed].
- Sun GY, Xu J, Jensen MD, Simonyi A. Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 2004, 45: 205-213 [PubMed].
- Phillis JW, O'Regan MH. A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res Brain Res Rev 2004, 44: 13-47 [PubMed].
- Staub F, Winkler A, Peters J, Goerke U, Kempski O, Baethmann A. Clearance and metabolism of arachidonic acid by C6 glioma cells and astrocytes. Neurochem Res 1995, 20: 1449-1456 [CrossRef] [PubMed].
- Hartung HP, Toyka KV. Leukotriene production by cultured astroglial cells. Brain Res 1987, 435: 367-370 [CrossRef] [PubMed].
- Seregi A, Simmet T, Schobert A, Hertting G. Characterization of cysteinyl-leukotriene formation in primary astroglial cell cultures. J Pharm Pharmacol 1990, 42: 191-193 [PubMed].
- Tocher DR, Bell JG, Sargent JR. Production of eicosanoids derived from 20:4n-6 and 20:5n-3 in primary cultures of turbot (Scophthalmus maximus) brain astrocytes in response to platelet activating factor, substance P and interleukin-1
. Comp Biochem Physiol B Biochem Mol Biol 1996, 115: 215-222 [PubMed].
- Moore SA, Yoder E, Murphy S, Dutton GR, Spector AA. Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). J Neurochem 1991, 56: 518-524 [PubMed].
- Amruthesh SC, Boerschel MF, McKinney JS, Willoughby KA, Ellis EF. Metabolism of arachidonic acid to epoxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and prostaglandins in cultured rat hippocampal astrocytes. J Neurochem 1993, 61: 150-159 [PubMed].
- Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998, 391: 281-285 [CrossRef] [PubMed].
- Felder CC, Kanterman RY, Ma AL, Axelrod J. A transfected m1 muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinositol hydrolysis. J Biol Chem 1989, 264: 20356-20362 [PubMed].
- Kanterman RY, Felder CC, Brenneman DE, Ma AL, Fitzgerald S, Axelrod J. Alpha 1-adrenergic receptor mediates arachidonic acid release in spinal cord neurons independent of inositol phospholipid turnover. J Neurochem 1990, 54: 1225-1232 [PubMed].
- Stella N, Tence M, Glowinski J, Premont J. Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J Neurosci 1994, 14: 568-575 [PubMed].
- Sergeeva M, Strokin M, Wang H, Ubl JJ, Reiser G. Arachidonic acid and docosahexaenoic acid suppress thrombin-evoked Ca2+ response in rat astrocytes by endogenous arachidonic acid liberation. J Neurochem 2002, 82: 1252-1261 [CrossRef] [PubMed].
- Bruner G, Murphy S. ATP-evoked arachidonic acid mobilization in astrocytes is via a P2Y- purinergic receptor. J Neurochem 1990, 55: 1569-1575 [PubMed].
- Stella N, Estelles A, Siciliano J, Tence M, Desagher S, Piomelli D, Glowinski J, Premont J. Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes. J Neurosci 1997, 17: 2939-2946 [PubMed].
- Chen WC, Chen CC. ATP-induced arachidonic acid release in cultured astrocytes is mediated by Gi protein coupled P2Y1 and P2Y2 receptors. Glia 1998, 22: 360-370 [CrossRef] [PubMed].
- Strokin M, Sergeeva M, Reiser G. Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 2003, 139: 1014-1022 [CrossRef] [PubMed].
- Budd SL, Lipton SA. Calcium tsunamis: do astrocytes transmit cell death messages via gap junctions during ischemia? Nature Neurosci 1998, 1: 431-432 [CrossRef].
- Carmignoto G. Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 2000, 62: 561-581 [CrossRef] [PubMed].
- Rottingen J, Iversen JG. Ruled by waves? Intracellular and intercellular calcium signalling. Acta Physiol Scand 2000, 169: 203-219 [CrossRef] [PubMed].
- Perea G, Araque A. Synaptic regulation of the astrocyte calcium signal. J Neural Transm 2005, 112: 127-135 [CrossRef] [PubMed].
- Araque A, Martin ED, Perea G, Arellano JI, Buno W. Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 2002, 22: 2443-2450 [PubMed].
- Kang J, Jiang L, Goldman SA, Nedergaard M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1998, 1: 683-692 [CrossRef] [PubMed].
- Pasti L, Volterra A, Pozzan T, Carmignoto G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 1997, 17: 7817-7830 [PubMed].
- Shelton MK, McCarthy KD. Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 2000, 74: 555-563 [CrossRef] [PubMed].
- Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: homeostasis and signaling function. Physiol Rev 1998, 78: 99-141 [PubMed].
- Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003, 4: 517-529 [CrossRef] [PubMed].
- Berridge MJ. Capacitative calcium entry. Biochem J 1995, 312: 1-11 [PubMed].
- Putney JW Jr. Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. Cell Calcium 1997, 21: 257-261 [CrossRef] [PubMed].
- Putney JW. Capacitative calcium entry revisited. Cell Calcium 1990, 11: 611-624 [CrossRef] [PubMed].
- Barritt GJ. Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 1999, 337: 153-169 [CrossRef] [PubMed].
- Putney JW Jr, Broad LM, Braun FJ, Lievremont JP, Bird GS. Mechanisms of capacitative calcium entry. J Cell Sci 2001, 114: 2223-2229 [PubMed].
- Venkatachalam K, van Rossum DB, Patterson RL, Ma HT, Gill DL. The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol 2002, 4: E263-E272 [CrossRef] [PubMed].
- Bootman MD, Berridge MJ, Roderick HL. Calcium signalling: more messengers, more channels, more complexity. Curr Biol 2002, 12: R563-R565 [CrossRef] [PubMed].
- Shuttleworth TJ. What drives calcium entry during [Ca2+]i oscillations? Challenging the capacitative model. Cell Calcium 1999, 25: 237-246 [CrossRef] [PubMed].
- Girard S, Clapham D. Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx. Science 1993, 260: 229-232.
- Yule DI, Gallacher DV. Oscillations of cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine. FEBS Lett 1988, 239: 358-362 [CrossRef] [PubMed].
- Martin SC, Shuttleworth TJ. Ca2+ influx drives agonist-activated [Ca2+]i oscillations in an exocrine cell. FEBS Lett 1994, 352: 32-36 [CrossRef] [PubMed].
- Sergeeva M, Ubl JJ, Reiser G. Disruption of actin cytoskeleton in cultured rat astrocytes suppresses ATP- and bradikinin-induced [Ca2+]i oscillations by reducing the coupling efficiency between Ca2+ release, capacitative Ca2+ entry, and store refilling. Neuroscience 2000, 97: 765-769 [CrossRef] [PubMed].
- Berridge MJ. Cytoplasmic calcium oscillations: a two pool model. Cell Calcium 1991, 12: 63-72 [CrossRef] [PubMed].
- Thomas AP, Bird GS, Hajnoczky G, Robb-Gaspers LD, Putney JW. Spatial and temporal aspects of cellular calcium signaling. FASEB J 1996, 10: 1505-1517 [PubMed].
- Wang XB, Osugi T, Uchida S. Muscarinic receptors stimulate Ca2+ influx via phospholipase A2 pathway in ileal smooth muscles. Biochem Biophys Res Commun 1993, 193: 483-489 [CrossRef] [PubMed].
- Shuttleworth TJ. Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations. J Biol Chem 1996, 271: 21720-21725 [PubMed].
- Munaron L, Antoniotti S, Distasi C, Lovisolo D. Arachidonic acid mediates calcium influx induced by basic fibroblast growth factor in Balb-c 3T3 fibroblasts. Cell Calcium 1997, 22: 179-188 [CrossRef] [PubMed].
- Mizuno N, Naruse S, Kitagawa M, Ishiguro H, Hayakawa T. Effects of phospholipase A2 inhibitors on Ca2+ oscillations in pancreatic acinar cells. Pancreas 2000, 20: 77-83 [PubMed].
- Berridge MJ. Cell signalling. A tale of two messengers. Nature 1993, 365: 388-389 [CrossRef] [PubMed].
- Shuttleworth TJ. Intracellular Ca2+ signalling in secretory cells. J Exp Biol 1997, 200: 303-314 [PubMed].
- Mignen O, Shuttleworth TJ. IARC, a novel arachidonate-regulated, noncapacitative Ca2+ entry channel. J Biol Chem 2000, 275: 9114-9119 [CrossRef] [PubMed].
- Luo D, Broad LM, Bird GS, Putney JW. Signaling pathways underlying muscarinic receptor-induced [Ca2+]i oscillations in HEK293 cells. J Biol Chem 2001, 276: 5613-5621 [CrossRef] [PubMed].
- Ferrier GR, Redondo I, Zhu J, Murphy MG. Differential effects of docosahexaenoic acid on contractions and L-type Ca2+ current in adult cardiac myocytes. Cardiovasc Res 2002, 54: 601-610 [CrossRef] [PubMed].
- Hirafuji M, Ebihara T, Kawahara F, Minami M. Effect of docosahexaenoic acid on smooth muscle cell functions. Life Sci 1998, 62: 1689-1693 [CrossRef] [PubMed].
- Hasselmann M, Reimund JM. Lipids in the nutritional support of the critically ill patients. Curr Opin Crit Care 2004, 10: 449-455 [CrossRef] [PubMed].
- Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr 2004, 24: 597-615 [CrossRef] [PubMed].
- Connor WE. Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 2000, 71: 171S-175S [PubMed].
- Sergeeva M, Strokin M, Wang H, Ubl JJ, Reiser G. Arachidonic acid in astrocytes blocks Ca2+ oscillations by inhibiting store-operated Ca2+ entry, and causes delayed Ca2+ influx. Cell Calcium 2003, 33: 283-292 [CrossRef] [PubMed].
- Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985, 260: 3440-3450 [PubMed].
- Broad LM, Cannon TR, Taylor CW. A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol 1999, 517: 121-134 [CrossRef] [PubMed].
- Fernando KC, Barritt GJ. Characterisation of the inhibition of the hepatocyte receptor-activated Ca2+ inflow system by gadolinium and SK&F 96365. Biochim Biophys Acta 1994, 1222: 383-389 [PubMed].
- Jorgensen NK, Petersen SF, Hoffmann EK. Thrombin-, bradykinin-, and arachidonic acid-induced Ca2+ signaling in Ehrlich ascites tumor cells. Am J Physiol 1999, 276: C26-C37 [PubMed].
- Hertelendy F, Molnar M, Jamaluddin M. Dual action of arachidonic acid on calcium mobilization in avian granulosa cells. Mol Cell Endocrinol 1992, 83: 173-181 [CrossRef] [PubMed].
- Soliven B, Takeda M, Shandy T, Nelson DJ. Arachidonic acid and its metabolites increase Cai in cultured rat oligodendrocytes. Am J Physiol 1993, 264: C632-C640 [PubMed].
- Eungdamrong NJ, Iyengar R. Computational approaches for modeling regulatory cellular networks. Trends Cell Biol 2004, 14: 661-669 [CrossRef] [PubMed].
- Ferrell JE Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 2002, 14: 140-148 [CrossRef] [PubMed].
- Reetz G, Wiesinger H, Reiser G. ATP-induced oscillations of cytosolic Ca2+ activity in cultured astrocytes from rat brain are modulated by medium osmolarity indicating a control of [Ca2+]i oscillations by cell volume. Neurochem Res 1997, 22: 621-628 [CrossRef] [PubMed].
- Verkhratsky A, Kettenmann H. Calcium signalling in glial cells. Trends Neurosci 1996, 19: 346-352 [CrossRef] [PubMed].
- Mignen O, Thompson JL, Shuttleworth TJ. Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways. J Biol Chem 2001, 276: 35676-35683 [CrossRef] [PubMed].
- Moneer Z, Taylor CW. Reciprocal regulation of capacitative and non-capacitative Ca2+ entry in A7r5 vascular smooth muscle cells: only the latter operates during receptor activation. Biochem J 2002, 362: 13-21 [CrossRef] [PubMed].
- Lands WE. Stories about acyl chains. Biochim Biophys Acta 2000, 1483: 1-14 [PubMed].
- Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM. A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 2004, 6: 113-120 [CrossRef] [PubMed].