Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Effect of dietary plant tannin supplementation on rumen fermentation and enteric methane production

S. Holík, S. Malyugina, A. Staffa, J. Filípek, P. Horký, R. Kadek and J. Illek
Journal of Animal and Feed Sciences 34 (2) 272 (2025)
https://doi.org/10.22358/jafs/195648/2025

Assessment of rice bran with acrylate or pyruvate in modulating ruminal fermentation and methane production in vitro

Jamal James D. Manlapig, Jane Camille A. Crisostomo, Makoto Kondo, Tomomi Ban‐Tokuda and Hiroki Matsui
Journal of the Science of Food and Agriculture (2025)
https://doi.org/10.1002/jsfa.14437

Feed additives for methane mitigation: A guideline to uncover the mode of action of antimethanogenic feed additives for ruminants

Alejandro Belanche, André Bannink, Jan Dijkstra, Zoey Durmic, Florencia Garcia, Fernanda G. Santos, Sharon Huws, Jeyamalar Jeyanathan, Peter Lund, Roderick I. Mackie, Tim A. McAllister, Diego P. Morgavi, Stefan Muetzel, Dipti W. Pitta, David R. Yáñez-Ruiz and Emilio M. Ungerfeld
Journal of Dairy Science 108 (1) 375 (2025)
https://doi.org/10.3168/jds.2024-25046

Gas exchange, rumen hydrogen sinks, and nutrient digestibility and metabolism in lactating dairy cows fed 3-nitrooxypropanol and cracked rapeseed

Maria H. Kjeldsen, Martin R. Weisbjerg, Mogens Larsen, Ole Højberg, Christer Ohlsson, Nicola Walker, Anne Louise F. Hellwing and Peter Lund
Journal of Dairy Science 107 (4) 2047 (2024)
https://doi.org/10.3168/jds.2023-23743

Exploring the combination of Asparagopsis taxiformis and phloroglucinol to decrease rumen methanogenesis and redirect hydrogen production in goats

Pedro Romero, Emilio M. Ungerfeld, Milka Popova, Diego P. Morgavi, David R. Yáñez-Ruiz and Alejandro Belanche
Animal Feed Science and Technology 316 116060 (2024)
https://doi.org/10.1016/j.anifeedsci.2024.116060

Effect of rice bran fermented with Ligilactobacillus equi on in vitro fermentation profile and microbial population

Jamal James D. Manlapig, Makoto Kondo, Tomomi Ban‐Tokuda and Hiroki Matsui
Animal Science Journal 95 (1) (2024)
https://doi.org/10.1111/asj.13955

Nitrilase GiNIT from Gibberella intermedia Efficiently Degrades Nitriles Derived from Rapeseed Meal Glucosinolate

Han-Zhi Li, Ming-Yu Liu, Yu-Yue Wang, Xue-Mei Luo, Jia-Xun Feng and Shuai Zhao
International Journal of Molecular Sciences 25 (22) 11986 (2024)
https://doi.org/10.3390/ijms252211986

Assessment of Potential Anti-Methanogenic and Antimicrobial Activity of Ethyl Nitroacetate, α-Lipoic Acid, Taurine and L-Cysteinesulfinic Acid In Vitro

Gizem Levent, Aleksandar Božić, Branko T. Petrujkić, Todd R. Callaway, Toni L. Poole, Tawni L. Crippen, Roger B. Harvey, Pedro Ochoa-García, Agustin Corral-Luna, Kathleen M. Yeater and Robin C. Anderson
Microorganisms 12 (1) 34 (2023)
https://doi.org/10.3390/microorganisms12010034

Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro – Part 2. Dairy goats

P. Romero, R. Huang, E. Jiménez, J.M. Palma-Hidalgo, E.M. Ungerfeld, M. Popova, D.P. Morgavi, A. Belanche and D.R. Yáñez-Ruiz
animal 17 (5) 100789 (2023)
https://doi.org/10.1016/j.animal.2023.100789

Opportunities and Hurdles to the Adoption and Enhanced Efficacy of Feed Additives towards Pronounced Mitigation of Enteric Methane Emissions from Ruminant Livestock

Emilio M. Ungerfeld
Methane 1 (4) 262 (2022)
https://doi.org/10.3390/methane1040021

The rumen microbiome: balancing food security and environmental impacts

Itzhak Mizrahi, R. John Wallace and Sarah Moraïs
Nature Reviews Microbiology 19 (9) 553 (2021)
https://doi.org/10.1038/s41579-021-00543-6

Inhibiting Methanogenesis in Rumen Batch Cultures Did Not Increase the Recovery of Metabolic Hydrogen in Microbial Amino Acids

Emilio M. Ungerfeld, M. Fernanda Aedo, Emilio D. Martínez and Marcelo Saldivia
Microorganisms 7 (5) 115 (2019)
https://doi.org/10.3390/microorganisms7050115

Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants

S. Albores-Moreno, J. A. Alayón-Gamboa, L. A. Miranda-Romero, et al.
Tropical Animal Health and Production 51 (4) 893 (2019)
https://doi.org/10.1007/s11250-018-1772-7

Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances

Amlan Patra, Tansol Park, Minseok Kim and Zhongtang Yu
Journal of Animal Science and Biotechnology 8 (1) (2017)
https://doi.org/10.1186/s40104-017-0145-9

Redirection of Metabolic Hydrogen by Inhibiting Methanogenesis in the Rumen Simulation Technique (RUSITEC)

Jessie Guyader, Emilio M. Ungerfeld and Karen A. Beauchemin
Frontiers in Microbiology 8 (2017)
https://doi.org/10.3389/fmicb.2017.00393

Heritable Bovine Rumen Bacteria Are Phylogenetically Related and Correlated with the Cow’s Capacity To Harvest Energy from Its Feed

Goor Sasson, Sheerli Kruger Ben-Shabat, Eyal Seroussi, Adi Doron-Faigenboim, Naama Shterzer, Shamay Yaacoby, Margret E. Berg Miller, Bryan A. White, Eran Halperin, Itzhak Mizrahi, Margaret J. McFall-Ngai, Andrew Benson and Dan Knights
mBio 8 (4) (2017)
https://doi.org/10.1128/mBio.00703-17

Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows

D.W. Olijhoek, A.L.F. Hellwing, M. Brask, et al.
Journal of Dairy Science 99 (8) 6191 (2016)
https://doi.org/10.3168/jds.2015-10691

Anaerobic Disposal of Arsenic-Bearing Wastes Results in Low Microbially Mediated Arsenic Volatilization

Tara M. Webster, Raghav R. Reddy, James Y. Tan, Joy D. Van Nostrand, Jizhong Zhou, Kim F. Hayes and Lutgarde Raskin
Environmental Science & Technology 50 (20) 10951 (2016)
https://doi.org/10.1021/acs.est.6b02286

Reducing methane production by supplementation ofTerminalia chebulaRETZ. containing tannins and saponins

Nirawan Anantasook, Metha Wanapat, Pongsatorn Gunun and Anusorn Cherdthong
Animal Science Journal 87 (6) 783 (2016)
https://doi.org/10.1111/asj.12494

Effect of 2-bromoethanesulfonate on anaerobic consortium to enhance hydrogen production utilizing sugarcane bagasse

Juliana K. Braga, Laís A. Soares, Fabrício Motteran, Isabel Kimiko Sakamoto and Maria Bernadete A. Varesche
International Journal of Hydrogen Energy 41 (48) 22812 (2016)
https://doi.org/10.1016/j.ijhydene.2016.09.065

Anaerobic microbial community response to methanogenic inhibitors 2‐bromoethanesulfonate and propynoic acid

Tara M. Webster, Adam L. Smith, Raghav R. Reddy, et al.
MicrobiologyOpen 5 (4) 537 (2016)
https://doi.org/10.1002/mbo3.349

Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation

Emilio M. Ungerfeld
Frontiers in Microbiology 6 (2015)
https://doi.org/10.3389/fmicb.2015.01272

Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis

Emilio M. Ungerfeld
Frontiers in Microbiology 6 (2015)
https://doi.org/10.3389/fmicb.2015.00037

Climate Change Impact on Livestock: Adaptation and Mitigation

Veerasamy Sejian, L. Samal, N. Haque, et al.
Climate Change Impact on Livestock: Adaptation and Mitigation 359 (2015)
https://doi.org/10.1007/978-81-322-2265-1_22

Response of Fumaric Acid Addition on Methanogenesis, Rumen Fermentation, and Dry Matter Degradability in Diets Containing Wheat Straw and Sorghum or Berseem as Roughage Source

S. K. Sirohi, Poonam Pandey and Navneet Goel
ISRN Veterinary Science 2012 1 (2012)
https://doi.org/10.5402/2012/496801

Effects of Organic Acids on In Vitro Ruminal Fermentation Characteristics and Methane Emission

Ji Un Ok, Dong Uk Ha, Shin Ja Lee, et al.
Journal of Life Science 22 (10) 1324 (2012)
https://doi.org/10.5352/JLS.2012.22.10.1324

Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo

Adam Cieslak, Pawel Zmora, Emilia Pers-Kamczyc and Malgorzata Szumacher-Strabel
Animal Feed Science and Technology 176 (1-4) 102 (2012)
https://doi.org/10.1016/j.anifeedsci.2012.07.012

Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance—a review

Jia-Kun Wang, Jun-An Ye and Jian-Xin Liu
Tropical Animal Health and Production 44 (4) 697 (2012)
https://doi.org/10.1007/s11250-011-9960-8

Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro

H.Y. Tan, C.C. Sieo, N. Abdullah, et al.
Animal Feed Science and Technology 169 (3-4) 185 (2011)
https://doi.org/10.1016/j.anifeedsci.2011.07.004

Chemical inhibitors of methanogenesis and putative applications

He Liu, Jin Wang, Aijie Wang and Jian Chen
Applied Microbiology and Biotechnology 89 (5) 1333 (2011)
https://doi.org/10.1007/s00253-010-3066-5

Rumen microbial response in production of CLA and methane to safflower oil in association with fish oil or/and fumarate

Xiang Z. LI, Rui J. LONG, Chang G. YAN, Hong G. LEE, Young J. KIM and Man K. SONG
Animal Science Journal 82 (3) 441 (2011)
https://doi.org/10.1111/j.1740-0929.2010.00857.x

Control of Methane Emission in Ruminants and Industrial Application of Biogas from Livestock Manure in Korea

Man K. Song, Xiang Z. Li, Young K. Oh, Chang-kyu Lee and Y. Hyun
Asian-Australasian Journal of Animal Sciences 24 (1) 130 (2010)
https://doi.org/10.5713/ajas.2011.r.02

Interspecies Somatic Cell Nuclear Transfer Technique for Researching Dog Cloning and Embryonic Stem Cells

Satoshi Sugimura and Eimei Sato
Asian-Australasian Journal of Animal Sciences 24 (1) 1 (2010)
https://doi.org/10.5713/ajas.2011.r.01

Rumen microbial responses in fermentation characteristics and production of CLA and methane to linoleic acid in associated with malate or fumarate

X.Z. Li, R.J. Long, C.G. Yan, et al.
Animal Feed Science and Technology 155 (2-4) 132 (2010)
https://doi.org/10.1016/j.anifeedsci.2009.11.002

Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs

Hui-Ling Mao, Jia-Kun Wang, Yi-Yi Zhou and Jian-Xin Liu
Livestock Science 129 (1-3) 56 (2010)
https://doi.org/10.1016/j.livsci.2009.12.011

Effects of Nitroethane and Monensin on Ruminal Fluid Fermentation Characteristics and Nitrocompound-Metabolizing Bacterial Populations

Hector Gutierrez-Bañuelos, Robin C. Anderson, Gordon E. Carstens, Luis O. Tedeschi, William E. Pinchak, Elisa Cabrera-Diaz, Nathan A. Krueger, Todd R. Callaway and David J. Nisbet
Journal of Agricultural and Food Chemistry 56 (12) 4650 (2008)
https://doi.org/10.1021/jf800756c

Short Communication: Malic Acid Does Not Promote Vaccenic Acid Accumulation in Mixed Ruminal Fluid with Fractionated Fish Oil by a Rumen-Simulation Technique

L. Liu, J.Q. Wang, D.P. Bu, et al.
Journal of Dairy Science 91 (10) 3993 (2008)
https://doi.org/10.3168/jds.2008-0984

Increases in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis

E.M. Ungerfeld, S.R. Rust and R. Burnett
Canadian Journal of Microbiology 53 (4) 496 (2007)
https://doi.org/10.1139/W07-008

Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen

R.C. Anderson, G.E. Carstens, R.K. Miller, et al.
Bioresource Technology 97 (18) 2421 (2006)
https://doi.org/10.1016/j.biortech.2005.10.013

Effects of butyrate precursors on electron relocation when methanogenesis is inhibited in ruminal mixed cultures

E.M. Ungerfeld, S.R. Rust and R. Burnett
Letters in Applied Microbiology 060329075718008 (2006)
https://doi.org/10.1111/j.1472-765X.2006.01890.x

Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro

C. J. Newbold, S. López, N. Nelson, et al.
British Journal of Nutrition 94 (1) 27 (2005)
https://doi.org/10.1079/BJN20051445

Effects of two lipids on in vitro ruminal methane production

E.M. Ungerfeld, Steven R. Rust, Robert J. Burnett, Melvin T. Yokoyama and J.K. Wang
Animal Feed Science and Technology 119 (1-2) 179 (2005)
https://doi.org/10.1016/j.anifeedsci.2004.12.007

Attempts to inhibit ruminal methanogenesis by blocking pyruvate oxidative decarboxylation

E M Ungerfeld, S R Rust and R Burnett
Canadian Journal of Microbiology 49 (10) 650 (2003)
https://doi.org/10.1139/w03-079