Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Estimation of Individual Glucose Reserves in High-Yielding Dairy Cows

Jonas Habel, Patrick Chapoutot, Christian Koch and Albert Sundrum
Dairy 3 (3) 438 (2022)
https://doi.org/10.3390/dairy3030033

Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems

Latifa Ouatahar, André Bannink, Gary Lanigan and Barbara Amon
Science of The Total Environment 776 145932 (2021)
https://doi.org/10.1016/j.scitotenv.2021.145932

Applying nanotechnology to increase the rumen protection of amino acids in dairy cows

João Albuquerque, Susana Casal, Ricardo Nuno Mendes de Jorge Páscoa, Ingrid Van Dorpe, António José Mira Fonseca, Ana Rita Jordão Cabrita, Ana Rute Neves and Salette Reis
Scientific Reports 10 (1) (2020)
https://doi.org/10.1038/s41598-020-63793-z

Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota

Rafael Muñoz-Tamayo, Sylvie Giger-Reverdin and Daniel Sauvant
Animal Feed Science and Technology 220 1 (2016)
https://doi.org/10.1016/j.anifeedsci.2016.07.005

The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5

M.E. Van Amburgh, E.A. Collao-Saenz, R.J. Higgs, et al.
Journal of Dairy Science 98 (9) 6361 (2015)
https://doi.org/10.3168/jds.2015-9378

Ruminal pH predictions for beef cattle: Comparative evaluation of current models

M. A. Sarhan and K. A. Beauchemin
Journal of Animal Science 93 (4) 1741 (2015)
https://doi.org/10.2527/jas.2014-8428

Stable isotope‐labelled feed nutrients to assess nutrient‐specific feed passage kinetics in ruminants

Daniel Warner, Jan Dijkstra, Wouter H Hendriks and Wilbert F Pellikaan
Journal of the Science of Food and Agriculture 94 (5) 819 (2014)
https://doi.org/10.1002/jsfa.6426

Ability of commercially available dairy ration programs to predict duodenal flows of protein and essential amino acids in dairy cows

D. Pacheco, R.A. Patton, C. Parys and H. Lapierre
Journal of Dairy Science 95 (2) 937 (2012)
https://doi.org/10.3168/jds.2011-4171

Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production

Aklilu W. Alemu, J. Dijkstra, A. Bannink, J. France and E. Kebreab
Animal Feed Science and Technology 166-167 761 (2011)
https://doi.org/10.1016/j.anifeedsci.2011.04.054

In vivo production and molar percentages of volatile fatty acids in the rumen: a quantitative review by an empirical approach

P. Nozière, F. Glasser and D. Sauvant
Animal 5 (3) 403 (2011)
https://doi.org/10.1017/S1751731110002016

Carbohydrate quantitative digestion and absorption in ruminants: from feed starch and fibre to nutrients available for tissues

P. Nozière, I. Ortigues-Marty, C. Loncke and D. Sauvant
Animal 4 (7) 1057 (2010)
https://doi.org/10.1017/S1751731110000844

A nutrition mathematical model to account for dietary supply and requirements of energy and other nutrients for domesticated small ruminants: The development and evaluation of the Small Ruminant Nutrition System

L.O. Tedeschi, A. Cannas and D.G. Fox
Small Ruminant Research 89 (2-3) 174 (2010)
https://doi.org/10.1016/j.smallrumres.2009.12.041

Do Ruminants Alter Their Preference for Pasture Species in Response to the Synchronization of Delivery and Release of Nutrients?

J. Hill, D.F. Chapman, G.P. Cosgrove and A.J. Parsons
Rangeland Ecology & Management 62 (5) 418 (2009)
https://doi.org/10.2111/08-084.1

Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (β-hydroxybutyrate, lactate) from dietary characteristics in ruminants: A meta-analysis approach1

C. Loncke, I. Ortigues-Marty, J. Vernet, et al.
Journal of Animal Science 87 (1) 253 (2009)
https://doi.org/10.2527/jas.2008-0939

Meta-analysis of 0 to 8 h post-prandial evolution of ruminal pH

C. Dragomir, D. Sauvant, J.-L. Peyraud, S. Giger-Reverdin and B. Michalet-Doreau
Animal 2 (10) 1437 (2008)
https://doi.org/10.1017/S1751731108002656

Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall

A. Bannink, J. France, S. Lopez, et al.
Animal Feed Science and Technology 143 (1-4) 3 (2008)
https://doi.org/10.1016/j.anifeedsci.2007.05.002

Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle

J. L. ELLIS, J. DIJKSTRA, E. KEBREAB, et al.
The Journal of Agricultural Science 146 (2) 213 (2008)
https://doi.org/10.1017/S0021859608007752

A nutrition mathematical model to account for dietary supply and requirements of energy and nutrients for domesticated small ruminants: the development and evaluation of the Small Ruminant Nutrition System

Luis Orlindo Tedeschi, Antonello Cannas and Danny Gene Fox
Revista Brasileira de Zootecnia 37 (spe) 178 (2008)
https://doi.org/10.1590/S1516-35982008001300020

Development and evaluation of empirical equations to predict feed passage rate in cattle

S. Seo, L.O. Tedeschi, C. Lanzas, C.G. Schwab and D.G. Fox
Animal Feed Science and Technology 128 (1-2) 67 (2006)
https://doi.org/10.1016/j.anifeedsci.2005.09.014

Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows

J.-P. Jouany
Animal Reproduction Science 96 (3-4) 250 (2006)
https://doi.org/10.1016/j.anireprosci.2006.08.005

Effect of Total Mixed Ration Composition on Amino Acid Profiles of Different Fractions of Ruminal Microbes In Vitro

J. Boguhn, H. Kluth and M. Rodehutscord
Journal of Dairy Science 89 (5) 1592 (2006)
https://doi.org/10.3168/jds.S0022-0302(06)72226-3

A mechanistic model for predicting the nutrient requirements and feed biological values for sheep1

A. Cannas, L. O. Tedeschi, D. G. Fox, A. N. Pell and P. J. Van Soest
Journal of Animal Science 82 (1) 149 (2004)
https://doi.org/10.2527/2004.821149x

The role of dynamic modelling in understanding the microbial contribution to rumen function

Jan Dijkstra, Jonathan A. N. Mills and James France
Nutrition Research Reviews 15 (01) 67 (2002)
https://doi.org/10.1079/NRR200237

Relationship between fish oil intake by dairy cows and the yield of eicosapentaenoic acid and docosahexaenoic acid in their milk

C. Rymer, C. Dyer, D.I. Givens and R. Allison
Proceedings of the British Society of Animal Science 2001 199 (2001)
https://doi.org/10.1017/S1752756200005810

Proportions of Volatile Fatty Acids in Relation to the Chemical Composition of Feeds Based on Grass Silage

N.C. Friggens, J.D. Oldham, R.J. Dewhurst and G. Horgan
Journal of Dairy Science 81 (5) 1331 (1998)
https://doi.org/10.3168/jds.S0022-0302(98)75696-6