The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
P. Lescoat , D. Sauvant
Reprod. Nutr. Dev., 35 1 (1995) 45-70
This article has been cited by the following article(s):
40 articles
Paul Blondiaux, Tristan Senga Kiessé, Maguy Eugène and Rafael Muñoz-Tamayo (2024) https://doi.org/10.1101/2024.06.19.599712
Katarina Merk, Kathryn G. Link, Robert D. Guy and Matthias Hess (2023) https://doi.org/10.1101/2023.11.30.569127
Estimation of Individual Glucose Reserves in High-Yielding Dairy Cows
Jonas Habel, Patrick Chapoutot, Christian Koch and Albert Sundrum Dairy 3 (3) 438 (2022) https://doi.org/10.3390/dairy3030033
Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems
Latifa Ouatahar, André Bannink, Gary Lanigan and Barbara Amon Science of The Total Environment 776 145932 (2021) https://doi.org/10.1016/j.scitotenv.2021.145932
Applying nanotechnology to increase the rumen protection of amino acids in dairy cows
João Albuquerque, Susana Casal, Ricardo Nuno Mendes de Jorge Páscoa, Ingrid Van Dorpe, António José Mira Fonseca, Ana Rita Jordão Cabrita, Ana Rute Neves and Salette Reis Scientific Reports 10 (1) (2020) https://doi.org/10.1038/s41598-020-63793-z
Modeling efficiency and robustness in ruminants: the nutritional point of view
Daniel Sauvant Animal Frontiers 9 (2) 60 (2019) https://doi.org/10.1093/af/vfz012
Gustavo D. Cruz, Danilo Domingues Millen and André Luiz Nagatani Rigueiro 265 (2016) https://doi.org/10.1007/978-3-319-30533-2_10
Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota
Rafael Muñoz-Tamayo, Sylvie Giger-Reverdin and Daniel Sauvant Animal Feed Science and Technology 220 1 (2016) https://doi.org/10.1016/j.anifeedsci.2016.07.005
The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5
M.E. Van Amburgh, E.A. Collao-Saenz, R.J. Higgs, et al. Journal of Dairy Science 98 (9) 6361 (2015) https://doi.org/10.3168/jds.2015-9378
Ruminal pH predictions for beef cattle: Comparative evaluation of current models
M. A. Sarhan and K. A. Beauchemin Journal of Animal Science 93 (4) 1741 (2015) https://doi.org/10.2527/jas.2014-8428
Stable isotope‐labelled feed nutrients to assess nutrient‐specific feed passage kinetics in ruminants
Daniel Warner, Jan Dijkstra, Wouter H Hendriks and Wilbert F Pellikaan Journal of the Science of Food and Agriculture 94 (5) 819 (2014) https://doi.org/10.1002/jsfa.6426
Ruminal pH regulation and nutritional consequences of low pH
J. Dijkstra, J.L. Ellis, E. Kebreab, et al. Animal Feed Science and Technology 172 (1-2) 22 (2012) https://doi.org/10.1016/j.anifeedsci.2011.12.005
Ability of commercially available dairy ration programs to predict duodenal flows of protein and essential amino acids in dairy cows
D. Pacheco, R.A. Patton, C. Parys and H. Lapierre Journal of Dairy Science 95 (2) 937 (2012) https://doi.org/10.3168/jds.2011-4171
Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production
Aklilu W. Alemu, J. Dijkstra, A. Bannink, J. France and E. Kebreab Animal Feed Science and Technology 166-167 761 (2011) https://doi.org/10.1016/j.anifeedsci.2011.04.054
In vivo production and molar percentages of volatile fatty acids in the rumen: a quantitative review by an empirical approach
P. Nozière, F. Glasser and D. Sauvant Animal 5 (3) 403 (2011) https://doi.org/10.1017/S1751731110002016
A nutrition mathematical model to account for dietary supply and requirements of energy and other nutrients for domesticated small ruminants: The development and evaluation of the Small Ruminant Nutrition System
L.O. Tedeschi, A. Cannas and D.G. Fox Small Ruminant Research 89 (2-3) 174 (2010) https://doi.org/10.1016/j.smallrumres.2009.12.041
Carbohydrate quantitative digestion and absorption in ruminants: from feed starch and fibre to nutrients available for tissues
P. Nozière, I. Ortigues-Marty, C. Loncke and D. Sauvant Animal 4 (7) 1057 (2010) https://doi.org/10.1017/S1751731110000844
Do Ruminants Alter Their Preference for Pasture Species in Response to the Synchronization of Delivery and Release of Nutrients?
J. Hill, D.F. Chapman, G.P. Cosgrove and A.J. Parsons Rangeland Ecology & Management 62 (5) 418 (2009) https://doi.org/10.2111/08-084.1
Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (β-hydroxybutyrate, lactate) from dietary characteristics in ruminants: A meta-analysis approach1
C. Loncke, I. Ortigues-Marty, J. Vernet, et al. Journal of Animal Science 87 (1) 253 (2009) https://doi.org/10.2527/jas.2008-0939
Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle
J. L. ELLIS, J. DIJKSTRA, E. KEBREAB, et al. The Journal of Agricultural Science 146 (2) 213 (2008) https://doi.org/10.1017/S0021859608007752
A nutrition mathematical model to account for dietary supply and requirements of energy and nutrients for domesticated small ruminants: the development and evaluation of the Small Ruminant Nutrition System
Luis Orlindo Tedeschi, Antonello Cannas and Danny Gene Fox Revista Brasileira de Zootecnia 37 (spe) 178 (2008) https://doi.org/10.1590/S1516-35982008001300020
Meta-analysis of 0 to 8 h post-prandial evolution of ruminal pH
C. Dragomir, D. Sauvant, J.-L. Peyraud, S. Giger-Reverdin and B. Michalet-Doreau Animal 2 (10) 1437 (2008) https://doi.org/10.1017/S1751731108002656
Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall
A. Bannink, J. France, S. Lopez, et al. Animal Feed Science and Technology 143 (1-4) 3 (2008) https://doi.org/10.1016/j.anifeedsci.2007.05.002
Dynamic model of the lactating dairy cow metabolism
O. Martin and D. Sauvant Animal 1 (8) 1143 (2007) https://doi.org/10.1017/S1751731107000377
Thermodynamic modeling of ruminal fermentations
Anne Offner and Daniel Sauvant Animal Research 55 (5) 343 (2006) https://doi.org/10.1051/animres:2006021
Effect of Total Mixed Ration Composition on Amino Acid Profiles of Different Fractions of Ruminal Microbes In Vitro
J. Boguhn, H. Kluth and M. Rodehutscord Journal of Dairy Science 89 (5) 1592 (2006) https://doi.org/10.3168/jds.S0022-0302(06)72226-3
Development and evaluation of empirical equations to predict feed passage rate in cattle
S. Seo, L.O. Tedeschi, C. Lanzas, C.G. Schwab and D.G. Fox Animal Feed Science and Technology 128 (1-2) 67 (2006) https://doi.org/10.1016/j.anifeedsci.2005.09.014
Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows
J.-P. Jouany Animal Reproduction Science 96 (3-4) 250 (2006) https://doi.org/10.1016/j.anireprosci.2006.08.005
Mathematical models in ruminant nutrition
Luís Orlindo Tedeschi, Danny Gene Fox, Roberto Daniel Sainz, et al. Scientia Agricola 62 (1) 76 (2005) https://doi.org/10.1590/S0103-90162005000100015
A mechanistic model for predicting the nutrient requirements and feed biological values for sheep1
A. Cannas, L. O. Tedeschi, D. G. Fox, A. N. Pell and P. J. Van Soest Journal of Animal Science 82 (1) 149 (2004) https://doi.org/10.2527/2004.821149x
Comparative evaluation of the Molly, CNCPS, and LES rumen models
Anne Offner and Daniel Sauvant Animal Feed Science and Technology 112 (1-4) 107 (2004) https://doi.org/10.1016/j.anifeedsci.2003.10.008
Use of animal and dietary information to predict rumen turnover
A Cannas, P.J Van Soest and A.N Pell Animal Feed Science and Technology 106 (1-4) 95 (2003) https://doi.org/10.1016/S0377-8401(02)00255-9
Quantitative review of in situ starch degradation in the rumen
Anne Offner, Alex Bach and Daniel Sauvant Animal Feed Science and Technology 106 (1-4) 81 (2003) https://doi.org/10.1016/S0377-8401(03)00038-5
The role of dynamic modelling in understanding the microbial contribution to rumen function
Jan Dijkstra, Jonathan A. N. Mills and James France Nutrition Research Reviews 15 (01) 67 (2002) https://doi.org/10.1079/NRR200237
Relationship between fish oil intake by dairy cows and the yield of eicosapentaenoic acid and docosahexaenoic acid in their milk
C. Rymer, C. Dyer, D.I. Givens and R. Allison Proceedings of the British Society of Animal Science 2001 199 (2001) https://doi.org/10.1017/S1752756200005810
Use of in vitro gas production models in ruminal kinetics
R.E. Pitt, T.L. Cross, A.N. Pell, P. Schofield and P.H. Doane Mathematical Biosciences 159 (2) 145 (1999) https://doi.org/10.1016/S0025-5564(99)00020-6
Proportions of Volatile Fatty Acids in Relation to the Chemical Composition of Feeds Based on Grass Silage
N.C. Friggens, J.D. Oldham, R.J. Dewhurst and G. Horgan Journal of Dairy Science 81 (5) 1331 (1998) https://doi.org/10.3168/jds.S0022-0302(98)75696-6
Different Mathematical Approaches to Estimating Microbial Protein Supply in Ruminants
Jan Dijkstra, James France and David R. Davies Journal of Dairy Science 81 (12) 3370 (1998) https://doi.org/10.3168/jds.S0022-0302(98)75902-8
Comparison of the National Research Council Energy System for Lactating Cows with Four European Systems
M. Vermorel and J.B. Coulon Journal of Dairy Science 81 (3) 846 (1998) https://doi.org/10.3168/jds.S0022-0302(98)75643-7
The Rumen Microbial Ecosystem
D. Sauvant The Rumen Microbial Ecosystem 685 (1997) https://doi.org/10.1007/978-94-009-1453-7_16