Free Access
Issue
Reprod. Nutr. Dev.
Volume 40, Number 6, November-December 2000
Page(s) 597 - 606
DOI https://doi.org/10.1051/rnd:2000139

References

1
Asashima M., Kinoshita K., Ariizumi T., Malacinski M., Role of activin and other peptide growth factors in body patterning in the early amphibian embryo, Int. Rev. Cytol. 91 (1999) 1-52.
2
Bounoure L., Recherches sur la lignée germinale chez la Grenouille rousse aux premiers stades du développement, Ann. Sci. Nat. 10e sér. 17 (1934) 67-246.
3
Callebaut M., Extracorporal development of quail oocytes, Experientia 24 (1968) 1242-1243.
4
Callebaut M., The constituent oocytal layers of the avian germ and the origin of the primordial germ cell yolk, Arch. Anat. Microsc. 72 (1983) 199-214.
5
Callebaut M., Ooplasmic localization an segregation in quail germs: fate of the four ooplasms, Arch. Biol. (Brux.) 98 (1987) 441-473.
6
Callebaut M., Early eccentricity in gravitationally oriented quail germs, Eur. J. Morph. 31 (1993) 5-8.
7
Callebaut M., Relationship between the avian blastoderm and the subgerminal ooplasm, Eur. Arch. Biol. 105 (1994) 111-123.
8
Callebaut M., Van Nueten E., Rauber's (Koller's) sickle: the early gastrulation organizer of the avian blastoderm, Eur. J. Morph. 32 (1994) 35-48.
9
Callebaut M., Van Nueten E., Van Nassauw L., Harrisson F., Restoration of neurogastrulation by subgerminal ooplasm in endophyll free caudal quail blastoderm quadrants, Biol. Jaarb. Dodonaea 63 (1995) 120-132.
10
Callebaut M., Van Nueten E., Bortier H., Harrisson F., Van Nassauw L., Map of the Anlage fields in the avian unincubated blastoderm, Eur. J. Morph. 34 (1996) 347-361.
11
Callebaut M., Van Nueten E., Harrisson F., Van Nassauw L., Schrevens A., Induction of (pre)gastrulation and/or (pre)neurulation by subgerminal ooplasm and Rauber's sickle in cultured anti-sickle regions of avian unincubated blastoderms, Eur. J. Morph. 36 (1998) 1-10.
12
Callebaut M., Van Nueten E., Van Nassauw L., Bortier H., Harrisson F., Only the endophyll-Rauber's sickle complex and not cells derived from the caudal marginal zone induce a primitive streak in the upper layer of avian blastoderms, Reprod. Nutr. Dev. 38 (1998) 449-463.
13
Callebaut M., van Nueten E., Bortier, H., Harrisson F., Interaction of central subgerminal ooplasm with the elementary tissues (endophyll, Rauber's sickle and upper layer) of unincubated avian blastoderms in culture, Reprod. Nutr. Dev. 39 (1999) 589-605.
14
Callebaut M., Van Nueten E., Harrisson F., Bortier H., Mechanisms of caudocephalic axis formation in the avian germ disc, Belg. J. Zool. 130 (2000) 67-79.
15
Callebaut M., Van Nueten E., Harrisson F., Van Nassauw L., Bortier H., Avian junctional endoblast has strong embryo-inducing and -dominating potencies, Eur. J. Morph. 38 (2000) 3-16.
16
Clavert J., Déterminisme de la symétrie bilatérale chez les oiseaux. IV. Existence d'une phase critique pour la symétrisation de l'\oeuf, son stade, Arch. Anat. Microsc. Morph. Exp. 49 (1960) 345-361.
17
Cornell R., Musci T., Kimelmann D., FGF is a prospective competence factor for early activin type signals in Xenopus mesoderm induction, Development 121 (1995) 2429-2437.
18
Dalcq A., Pasteels J., Une conception nouvelle des bases physiologiques de la morphogénèse, Arch. Biol. 48 (1937) 669-710.
19
Danilchick M., Gerhart J., Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient, Dev. Biol. 122 (1987) 101-112.
20
Gaillard P., Germinal or covering epithelium, Natuurwetensch. Tijdschr. (Gent) 3 de BelgNederl, Cyto-embryol. Dagen, 1949, pp. 5-8.
21
Grunz H., Change of the differentiation pattern of amphibian ectoderm after the increase of the initial cell mass, Roux' Arch. Entwicklungsmech. Org. 187 (1979) 49-57.
22
Grunz H., Tacke L., Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer, Cell Differ. Dev. 28 (1989) 211-218.
23
Holowacz T., Elinson P., Cortical cytoplasm, which induces dorsal axis formation in Xenopus is inactivated by UV irradiation of the oocyte, Development 119 (1993) 277-285.
24
Horb M., Thomsen G., A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation, Development 124 (1997) 1689-1698.
25
Kageura H., Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis, Development 124 (1997) 1543-1551.
26
Kimelmann D., Christian J., Moon R., Synergistic principles of development: overlapping patterning systems in Xenopus mesoderm induction, Development 116 (1992) 1-9.
27
Kocher-Becker U., Tiedemann H., Induction of mesodermal and endodermal structures and primordial germ cells in Triturus ectoderm by a vegetalizing factor from chick embryos, Nature 233 (1971) 65-66.
28
Koshida Y., Kosin I.L., Intranuclear sex dimorphism in the feathers of six species of galliformes, Cytologia (Tokyo) 33 (1968) 230-240.
29
Le Douarin N., Barq G., Sur l'utilisation des cellules de la caille japonaise comme marqueurs biologiques en embryologie expérimentale, C.R. Acad. Sci. Paris 269 (1969) 1543-1546.
30
Melton D., Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes, Nature 328 (1987) 80-82.
31
New D.A.T., A new technique for the cultivation of the chick embryo, J. Embryol. Exp. Morph. 3 (1955) 326-331.
32
Nieuwkoop P., The ``organization center'' of the amphibian embryo: its spatial organization and morphogenetic action, Adv. Morphog. 10 (1973) 1-39.
33
Olsen M.W., Frequency of parthenogenesis in chicken eggs, J. Hered. 57 (1966) 23-25.
34
Pander C., Historiam metamorphoseos quam ovum incubatum prioribus quinque diebus subit, FE Nitribitt Wirceburgi, 1817.
35
Rauber A., Über die stellung des Hühnchens im Entwicklungsplan, W. Engelsmann, Leipzig, 1876.
36
Smith J., Mesoderm induction and mesoderm-inducing factors in early amphibian development, Development 105 (1989) 665-677.
37
Spemann H., Embryonic development and induction, New Haven, Yale University press, 1938.
38
Tsunekawa N., Naito M., Sakai Y., Nishida T., Noce T., Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells, Development 127 (2000) 2741-2750.
39
Vintemberger P., Clavert J., Sur le déterminisme de la symétrie bilatérale chez les oiseaux. V. Notion de l'existence, durant le séjour de l'\oeuf dans l'utérus, d'une période critique déterminante dans la réalisation de la symétrie bilatérale, C.R. Soc. Biol. 148 (1954) 1489-1493.
40
Weeks D., Melton D., A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-$\beta$, Cell 51 (1987) 861-868.
41
Wolpert L., Positional information and the spatial pattern of cellular differentiation, J. Theoret. Biol. 25 (1969) 1-47.


Abstract

Copyright INRA, EDP Sciences