values from the non-steady state equation to the steady state at plateaus. The acetate endogenous fluxes did not change during cold acetate infusions of 7 and 14 μmol.kg⁻¹.min⁻¹ (6 ± 2 et 5 ± 2 μmol.kg⁻¹.min⁻¹). The P values converged to 0.7. There were no differences between turnover calculated with the Steele equation and the steady state. The endogenous flux fell down to 1 μmol.kg⁻¹.min⁻¹ when the total flux of acetate was higher than 21 μmol.kg⁻¹.min⁻¹.

We concluded that the acetate fluxes calculated from the Steele equation were not different from the steady state values, when the endogenous acetate flux was stable and the acetate concentration lower than 600 μmol.L⁻¹.

Evidence for a defect of the oxidation of an oral long-chain triglycerides (LCT) load in obese subjects: interest of medium-chain triglycerides (MCT).

C Binnert ¹, C Pachiaudi ¹, M Beylot ¹, D Hans ¹, P Chantre ², JP Riou ¹, M Laville ¹ (¹ CRNH and Inserm 449, Faculté de médecine Laënnec, 69008 Lyon; ² Laboratoires Arkopharma, Nice, France).

Obesity is characterized by an excess of adipose tissue, coming for a large part from dietary triglycerides (TG). We studied in eight control subjects and eight obese subjects (BMI = 21.2 ± 0.9 and 32.9 ± 2.5 kg/m²) the metabolism of 30 g of LCT labeled with 200 mg of [1-1-1-¹³C]triolein for 6 h. Another study with a mixed MCT-LCT load (50%) with 150 mg of [1-1-1-¹³C]trioctanoin was also realized. Indirect calorimetry measurements were performed throughout the test, and blood sampling every 30 min in order to measure the isotopic enrichment in ¹³C in the TG fraction of chylomicrons (CM-TG) and in the non-esterified fatty acid (NEFA) fraction. Expired gas samples were collected every 30 min for ¹³C enrichment of CO₂ measurements (¹³CO₂) in order to calculate the fraction of ingested TG having been oxidized. After the LCT load the amount of lipids oxidized was negatively correlated with fat mass, (measured by dual X-ray absorptiometry), r = -0.75, P < 0.01. The oxidation of the load was correlated with the appearance of exogenous NEFA in the plasma: correlation between the area under the curve of ¹³C-NEFA concentrations and the oxidation of the load: r = -0.84, P < 0.01, and ranged from 1.7 g to 8.5 g. On the contrary, the oxidation of the MCT moiety of the MCT-LCT load was not correlated with fat mass (r = 0.22). The MCT load was more oxidized than the LCT one (59.4 ± 2.5% vs 16.2 ± 1.7%, P < 0.01).

In conclusion, our results showed that: i) obesity is associated with a deficit in LCT oxidation but not with MCT; ii) this deficit was probably due to a deficit of appearance of NEFA coming from ingested TG probably due to an excessive uptake of NEFA by the adipose tissue.

Influence of obesity and body fat distribution on postprandial lipemia in obese and lean women.

N Mekki ¹, MA Cristo-filis ², C Atlan-Gepner ², M Charbonnier ¹, C Juhe ¹, H Portugal ³, AM Pauli ³, B Vialettes ², D Lairon ¹ (¹ Unité 130, Inserm, 18, av Mozart; ² Hôpital Ste Marguerite, service de nutrition; ³ Hôpital Ste Marguerite, laboratoire central d'analyses, av Viton, 13009 Marseille, France).

It has already been shown that accumulation of upper body (abdominal) fat is associated with metabolic complications [Després (1994) Baillière's Clinical Endocrinology and Metabolism 3, 629] but it is not known how body fat repartition would influence postprandial lipemia in obese adults. Thus, this study explored the effect of waist-to-hip conference ratio
(WHR) and fasting triglyceridemia status on postabsorptive lipid metabolism.

Twenty-three obese women and six lean women (control: C), aged 24-57 years were enrolled. Among obese women with a WHR > 0.81, nine were normotriglyceridemic (group A) and seven were hypertriglyceridemic (group B), while seven were normotriglyceridemic and obese with a WHR < 0.81 (group D). All were given a high-fat test meal providing 40 g of triglycerides like sunflower margarine. Large chylomicrons remnants (CMR) and triglyceride-rich lipoproteins (TRLs, VLDL + small CMR) were separated by ultracentrifugation. Apo B 100-containing TRL particles were separated from apo B48-containing TRLs by affinity chromatography. Triglycerides (TG) were measured by enzymatic procedures. The ANOVA test was used to evaluate statistical differences (P < 0.05) between groups.

The mean insulin 0–2 h area under the curve (AUC) (mU.l/L) was higher (P < 0.05) in subjects of group B (163.1 ± 39.6) than in others studied (36.7 ± 17.2; 79.6 ± 26.6 and 51.6 ± 19.12, in group C, A and D, respectively). Mean serum and CMR-TG AUCs (mmol.h/L) of both lean (1.35 ± 0.31 and 1.09 ± 0.32, respectively) and group D (1.02 ± 0.16 and 0.92 ± 0.14, respectively) subjects were comparable and lower (P < 0.05) than the one in group A (3.17 ± 0.60 and 2.28 ± 0.43, respectively) and B (4.13 ± 0.68 and 3.04 ± 0.89) women. The relative proportion (%) of TG in apo B48-TRL particles was significantly higher (P < 0.05) at fasting and 7 h postprandially in group A (40.4 ± 2.2 and 43.6 ± 2.4, respectively) and B (32.8 ± 2.7 and 40.0 ± 4.2, respectively) subjects.

These results show that in abdominal obesity, other parameters than fasting triglyceridemia contribute to an exacerbated postprandial lipemia. In particular, accumulation of apoB48-TRL particles indicates a delayed clearance possibly related to insulin resistance.

Dual energy X-ray absorptiometry (DEXA) and anthropometric measurements combination for visceral fat evaluation in obese women.

E Berlin 1, C Marcus 2, JC Ruiz 3, V Durlach 1, M Leutenegger 1 (1 Clinique médicale B; 2 Service de radiologie, CHU Robert-Debré, 51092 Reims cedex; 3 Service de gynécologie, Hôpital Boucicaut, 75015 Paris, France).

Estimation of abdominal fat distribution associated with intra-abdominal visceral fat excess by simple anthropometric parameters (waist measurement: WM, sagittal diameter: SD, waist/hip ratio: W/H) is diversely considered especially in presence of obesity. DEXA is an accurate, non invasive and relatively accessible equipment for total and regional body composition measurements. Thus, this study aims to determine the potential contribution of this technique to quantification of visceral fat (VF).

We defined body composition of 58 obese women (age: 45.7 ± 13.3; body mass index: 37.1 ± 6.2; W/H: 1.0 ± 0.1, means ± SD) by DEXA (Hologic QDR 2000; V5.67). Above anthropometric measurements were collected at the same time by a unique investigator. Multiple data on regional body composition calculated according to segments of interest were combined between themselves or with global data and/or anthropometric measurements. Different combinations were selected when correlated to the latters and the Pearson correlation coefficient of a simple linear regression was afterwards calculated comparatively to VF andVF/subcutaneous fat (SCF) obtained by tomodensitometry measurement at L4-L5 level in 24 of these women.

Two ratios SD / fat percentage in thigh area (A) and WM / fat percentage of half