(518 vs 350 kJ respectively, p < 0.05). The DIT was significantly and negatively correlated with the percentage body fat (r = -0.51, p < 0.005). The DIT was highly correlated with the FFM and FM combined (r = 0.71, p < 0.01, DIT (kJ) = 17.5 FFM - 11.3 FM - 500.9).

These results support 2 conclusions. First that the DIT was significantly higher for lean men than obese men of similar FFM. Second, that body composition is a significant determinant of the magnitude of the DIT.

Deformability, membrane lipid composition and cytosolic cation contents of red blood cells in non-insulin dependent diabetic patients. P Miossec 1, M Garnier 2, J Paries 1, F Zirhi 2, M Dufilho 3, MG Pernollet 3, JR Attali 1, P Valensi 1 (1 Diabetology-Nutrition; 2 Toxicology, Jean-Verdier Hospital, Bondy; 3 URA CNRS 1482, Necker Hospital, Paris, France)

Many studies have clearly demonstrated hemorheological abnormalities in diabetic patients. The erythrocyte rigidity is higher, and is associated with changes in the membrane lipid composition. The aim of this work was to study, simultaneously, the variations in intra-erythrocyte cation concentrations and membrane lipids in 28 poorly controlled (HbA1C = 8.8 ± 3.6%, N < 6%) non-insulin-dependent diabetic patients (NIDDs) (age 54.9 ± 6.4 years, BMI 27.53 ± 4.2) compared with 26 control subjects (identical age and BMI). The red blood cell rigidity index (RI), measured on a Hanss' hemorheometer, was higher in the NIDDs than in controls (11.8 ± 2 vs 10.4 ± 2.2, p < 0.03), the RI correlated with post-prandial glycemia (r = 0.51, p < 0.02). Compared with the controls, in the NIDDs free cholesterol (FC) was lower (−16%, p < 0.01), sphingomyelins (SP) were higher (+42%, p < 0.01), free cholesterol/phospholipid ratio (FC/PL) was lower (−26%, p < 0.05). In NIDD, intra-erythrocyte sodium (Na+) was higher (29.4 ± 10.3 vs 18 ± 10.1 mEq/l, p < 0.001), while cytosolic potassium and magnesium were not significantly different. Intra-erythrocyte ionized calcium (Ca2+) was higher (105 ± 22.2 vs 69 ± 8 nmol/l, p < 0.001) as well as the calcium influx estimated by incorporation of 45Ca2+ (V.i 45Ca2+) (89 ± 28.8 vs 47 ± 20 μmol/l/cell/h (p < 0.001). In the NIDDs, Na+ correlated with RI (r = 0.41; p < 0.02) and with fasting glycemia (r = 0.45, p < 0.05); Na+ also correlated with membrane lipids: FC (r = -0.41, p < 0.05); phosphatidylethanolamine (PE) (r = -0.43, p < 0.05); phosphatidyl choline (PC) (r = -0.58, p < 0.001); FC/PL (r = 0.48, p < 0.01). V.i 45Ca2+ correlated with HbA1C (r = 0.51, p < 0.02), PC (r = 0.41, p < 0.05) and SP (r = 0.42, p < 0.05). In poorly controlled NIDDs the increase in Na+ and Ca2+ may be in part responsible for the reduction in red cell deformability and may be the result of modifications in the membrane lipid constitution. The increase in Ca2+ may result, at least in part, from the augmentation of V.i 45Ca2+. The changes in cation and lipid constitution of red blood cells correlate with glycemic control.

Anthropometric characteristics of obese subjects with nocturnal oxygen desaturation. D Cassuto 1, G Panotopoulos 1, E Orvoen-Frija 2, B Saci 2, A Basdevant 1, B Guy-Grand 1 (1 Dept of Nutrition; 2 Dept of Pneumology, Hôtel-Dieu, 75181 Paris cedex, France)

Nocturnal oxygen desaturation (NOD) can be observed in obese subjects (OB) with or without Obstructive Sleep Apnea Syndrome (OSAS). The aim of this prospective study was to clarify the anthropometric characteristics of OB with NOD with or without SAS.

Patients hospitalized in the Nutrition Unit (n = 66; 45 women, body mass index (BMI)