Changes in plasma gonadotropin after ovariectomy and estradiol supplementation at different stages at the end of the reproductive cycle in the rainbow trout (Salmo gairdneri R.)

par Marie-Charlotte BOMMELAER, R. BILLARD, B. BRETON *

Laboratoire de Physiologie des Poissons, I.N.R.A.:
78350 Jouy en Josas, France.
* Campus de Beaulieu, 35042 Rennes, France.

Summary. To determine the effect of gonadal feedback on plasma GTH level, female rainbow trout were ovariectomized at three stages at the end of the reproductive cycle: at the end of vitellogenesis, during germinal vesicle migration and during the post-ovulatory period.

A group of controls and one of castrates in each experiment were given an injection of physiological salt solution, and a third group of castrates was supplemented with estradiol-17β (E₂) twice a week (200 μg/kg) from the day of surgery. The blood was sampled twice a week, and the GTH measured by RIA.

At the end of vitellogenesis, castration induced a significant rise in the gonadotrophic hormone level (P < 0.001 from post-surgical day 5), and that response, unimpeded by E₂, was homogeneous in all the fish. During germinal vesicle migration, the response to castration and to supplementary E₂ varied with the individual. Ovariectomy induced a significant increase in GTH (P < 0.005 from day 3), but that increase was immediate in 5 females and delayed in the other 4; E₂ prevented GTH rise in only 6 females. At the post-ovulatory period we found no significant difference between the control fish and the castrates and E₂, at least temporarily, prevented the post-ovulatory rise in GTH which is usually found in trout.

Introduction.

Negative gonadal feedback on the secretion of plasma GTH in fish has been demonstrated in male rainbow trout: plasma GTH is higher after bilateral castration, but response intensity and duration vary according to the stage of the sexual cycle (Billard, Richard and Breton, 1976; Billard and Peter, 1977; Billard, 1978). The effect of steroid supplementation also depends on the stage of this cycle. During spermiation
when the pituitary is less receptive to LRH stimulation (Weil et al., 1978), a non-steroid factor present in the seminal fluid seems to at least partly inhibit the GTH increase which follows castration (Breton and Billard, 1980).

Analysis of experimental data on females indicates negative feedback between the gonads and the pituitary. De Vlaming (1974), using estrogens, attempted to stimulate oogenesis in females and Dadzie and Hyder (1976) observed compensatory ovarian hypertrophy in Tilapia after unilateral ovariectomy which was suppressed by methalibure. Cytological studies of the pituitary have shown that castration cells appear after gonadectomy, but do not occur in the presence of estradiol benzoate (Sundararajan and Goswami, 1968; McBride and Van Overbeeke, 1969;Febvre and Lafaurie, 1971; Ueda and Takahashi, 1980; Peute et al., 1980). However, estradiol benzoate can have a tropic effect on the gonadotrophic cells of intact female eels (Olivereau and Chambolle, 1978; Olivereau and Olivereau, 1979a, b) or of juvenile trout (Crim and Evans, 1979). Moreover, clomiphene citrate treatment may cause circulatory GTH (Breton, Jalabert and Fostier, 1975) and ovulation (Pandey and Hoar, 1972) to increase. This anti-estrogen acts by increasing hypothalamic GnRH activity (Singh and Singh, 1979).

Finally, Crim and Idler (1978), Whitehead et al. (1978) and Fostier et al. (1978), using analytical studies to compare changes in the amounts of GTH and of steroids of putative ovarian origin, have shown a positive correlation between GTH and E_2 levels during vitellogenesis, while Billard et al. (1978) have shown a negative correlation at the time of ovulation.

The present study deals with the question of gonadal feedback on GTH secretion in female rainbow trout at three different stages during the last part of the reproductive cycle. Castration experiments and 17β-E$_2$ supplementation were carried out (i) at the end of vitellogenesis when the E_2 level was maximal or decreasing and the GTH level was relatively low (ii) at the stage of germinal vesicle migration (onset of oocyte maturation: Jalabert et al., 1976; Billard et al., 1978), when the E_2 level was decreasing and the GTH level increasing, and (iii) at the post-ovulatory stage when the E_2 level was hardly detectable and the GTH level increased considerably.

Material and methods.

Brood females from the Gournay-sur-Aronde experimental fish-farm were brought to the laboratory 10 to 15 days before surgery. Throughout the experiment, they were kept in experimental tanks. The water was filtered, re-used and disinfected with UV (Maisse, Dorson and Torchy, 1980).

The experimental protocol presented in table 1 shows the number of experimental lots and the treatments during the three castration periods. The same control animals were used throughout the reproductive cycle, but because of a high mortality rate at the end of experiment 2, six new females of known ovulation time were introduced into the control group of experiment 3. Analysis of variance showed that the plasma GTH level at that time in the « old » and the « new » control fishes was not significantly different.
The «old» females were sorted twice a week to determine the stage of germinal vesicle migration and afterwards once a week to detect the time of ovulation. The «new» fish, sorted twice a week to detect the time of ovulation, were then isolated and ovariectomized at the most 3 days later. On the day the ovulated females were sorted, their eggs were expelled by abdominal massage.

After being anesthetized with phenoxyethanol (0.3 ml/l H₂O), the fish were put under permanent gill perfusion on the operating table using 10 °C water containing the same concentration of anesthesia. The common cavity was opened 2 to 4 cm immediately behind the pectoral fins, exposing the ovary whose posterior and anterior parts were excised; pressure of the index finger prevented hemorrhaging. When the experiment was over, castration integrity was checked. Sham surgery was carried out only in the first experiment; we opened the abdominal wall, examined the ovaries and closed the incision with a woven nylon thread (Bruneau liganyl no. 3). The ovariectomized females were given an intramuscular (IM) injection of 30 000 units of penicillin per kg of body weight; subsequently, they were kept in groups of 6 to 8 per 450-liter tank. Instead of the penicillin, the control fish received a 7 p. 1 000 NaCl solution.

Blood samples (0.5 ml of blood from the caudal vein) were taken before surgery and then twice a week with an heparinized syringe (100 IU filtered heparin/ml) from females anesthetized with phenoxyethanol (0.3 ml/l of H₂O). After centrifugation at 1 800 × g for 20 min, the plasma was stored at —20 °C until assay. The estradiol (Roussel) was first dissolved in 90° ethanol (1 mg/ml) then diluted in a 7 p. 1 000 saline solution the day of treatment so that 200 μg/kg of crystalline E₂, suspended in a volume of not more than 1 ml, was injected.
The concentrations of gonadotropic « maturational » hormone salmonid GTH (s-GTH) were determined by radioimmunoassay. The assay method used for s-GTH was the same as that used for cyprinid GTH (Breton et al., 1971). The antibody against trout GTH (Breton, Jalabert and Reinaud, 1976) was used at a final concentration of 0.5×10^{-8} ; the GTH used for 125I labelling and the standard was purified from Oncorhynchus tschawystcha pituitary (Breton, Prunet and Reinaud, 1978).

The mean GTH values are shown either with the 95 p. 100 standard deviation or with the extreme values when there are a small number of data. Variance analysis and the t-test were used ; the Mann-Whitney U-test was employed to statistically compare heterogeneous data (fig. 3).

Results.

Experiment 1 : Castration at the end of vitellogenesis. — After ovariectomy, all the females (fig. 1) showed a significant elevation of the circulating GTH from post-surgical day 5 ($P < 0.001$ compared to the controls) which only returned to the basal level after 3 weeks (fig. 1).

![Graph showing change in the level of plasma GTH after ovariectomy at the end of vitellogenesis in the rainbow trout.](image)

FIG. 1. — Change in the level of plasma GTH after ovariectomy at the end of vitellogenesis in the rainbow trout.
Estradiol treatment did not change the castration response, at least during the first 3 weeks of treatment.

Experiment 2: Castration during germinal vesicle migration. — Ovariectomy caused a rise in circulating GTH (P < 0.005 compared to controls from day 3) in all the females (fig. 2A), but detailed analysis of the results (fig. 2B) shows that there are two types of females. One-half evidenced a very quick rise in GTH: the original level was increased sixfold from post-surgical day 3 and remained that way up to the end of the experiment (day 14); the others had a slower GTH rise which only reached the level of the precedent group at post-surgical day 14.

Two types of females were also identified (fig. 2C) among the castrated fish given estradiol supplementation. One group of 5 showed a significant GTH elevation in the week after surgery but that rise was temporary. The other group of 6 females showed no rise in GTH, their levels remaining comparable to those of the controls.

Experiment 3: Post-ovulatory castration. — Due to the heterogeneous responses, it was necessary to present the individual result of each female (fig. 3). The circulating GTH increased in both the castrates (B) and the controls (A); the usual post-ovulatory elevation was observed in the latter. No difference was found between the two groups.

E₂ treatment appeared to prevent the post-ovulatory GTH rise in the castrated females, at least temporarily, but because of the low survival rate in that group, we could not determine if there was a general augmentation after day 10.

![Graph showing plasma GTH levels after ovariectomy and estradiol treatment.](image-url)
Discussion.

These results show negative gonadal feedback on pituitary (maturational hormone) secretion in female rainbow trout at the end of gametogenesis. We observed a marked effect of ovariectomy at the end of vitellogenesis and a variable effect during germinal vesicle migration. There was no gonadal feedback at the post-ovulatory stage. The effect of supplementing with 17β-E₂, one of the well-quantified steroids in trout plasma, was gradual, i.e. there was no effect at the end of vitellogenesis, partial effect when the germinal vesicle migrated, and a marked effect, at least temporarily, during the post-ovulatory period. The gonadal feedback found at the end of vitellogenesis did not appear to be induced by E₂. However, there are some limitations to our observations. We do not know how the E₂, injected into the circulation by way of the dorsal musculature, was taken up. It is presumed that any injection into the dorsal sinus would be taken up by the lymphatic system (Smith and Bell, 1975) and pass
rapidly into the systemic circulation, but E₂ injected as microcrystals might not faavourize uptake. Thus, due to the form, administration method and possible half-life variations of the hormone, we could not determine the efficiency of supplementary E₂.

Nevertheless, as the supplementation method was the same for all the fish, the two types of response at the migratory germinal vesicle (GV) stage might result from wide individual divergencies in the time-lag between detection of the migratory germinal vesicle and ovulation. Moreover, the definition of the studied stages is rather general, and the observed variations might be owing to more subtle physiological stages which were not detected by our method of classification.

The GV' stage would thus be a transitory period during which the hypothalamo-pituitary axis would be sensitized to E₂ effect either by modification of steroid half-life or by the presence or absence of circulating estradiol neutralizing protein. E₂ injection at the end of vitellogenesis and at the onset of germinal vesicle migration does not permit high plasma E₂ levels to be maintained, and the pre-ovulatory GTH rise is not prevented (Fostier, personal communication). Therefore, when E₂ is efficient, we cannot say where it acts, but since the central nervous system of fish can bind steroids, we may expect it to act on the hypothalamus (Peter, 1970 ; Billard and Peter, 1977).

It is possible that low or non-existent ovarian feedback on the pituitary at the post-ovulatory stage might cause plasma GTH to rise in normal physiological conditions, but this hypothesis raises questions because secretion may still increase if the eggs are left in the common cavity (Jalabert and Breton, 1980).

But this rise lasts only a short time (about 28 days), being about as brief as the post-castration elevation, and secretion could stop due to exhaustion of the pituitary gonadotropic cells. It has been shown that 4 weeks after ovariectomy of trout, the gonadotropic cells are characterized by the disappearance of secretory granules, suggesting that the cells are at least partially exhausted (Peute et al., 1978 ; Peute et al., 1980).

Several factors may be involved in negative gonadal feedback on the central nervous system. Some sex steroids such as testosterone, found in salmonid females (Campbell et al., 1980 ; Scott et al., 1980) and also quantified in the plasma of that species throughout the reproductive cycle (van Bohemen and Lambert, 1981), or 17β, 20α-progesterone (Jalabert et al., 1976) may play a role as well as other inhibitory factors in males (Breton and Billard, 1980).

Résumé. Afin de déterminer l'existence d'un contrôle des gonades sur le niveau de GTH plasmatique, des truites arc-en-ciel ont été ovariectomisées à trois stades du cycle de reproduction : en fin de vitellogénèse, au cours de la migration de la vésicule germinative et en période post-ovulatoire. Pour chacune des expériences, on disposait d'un lot d'animaux témoins et d'un lot d'animaux castrés recevant deux fois par semaine une injection d'une solution saline physiologique et d'un lot d'animaux castrés supplémentés deux fois par semaine en 17β-estradiol (200 γ/kg) à partir du jour de l'opération. Des prélèvements de sang étaient effectués deux fois par semaine sous héparine filtrée et les dosages de GTH étaient effectués par radioimmunologie.

Les réponses à la castration varient fortement en fonction de la période de castration, de même que les réponses à une supplémentation en estradiol : en fin de vitellogénèse, la castration provoque une élévation significative du niveau d'hormone gonadotrope (P < 0,001 dès le 5e jour post opératoire) et la réponse est homogène pour tous les animaux.
Dans les conditions d’administration, l’estriadiol n’empêche pas cette montée. Au cours de la migration de la vésicule germinative, les réponses à la castration et à une supplémentation en estriadiol varient selon les animaux : l’ovariectomie provoque une augmentation significative de GTH chez toutes les femelles (P < 0,005 au bout du 3e jour), mais elle est rapide chez 5 animaux et lente chez les 4 autres. L’estriadiol ne prévient la montée de GTH que chez 6 femelles. Au stade post-ovulatoire, on n’a pas pu mettre en évidence de différences significatives entre les animaux témoins et les animaux castrés et l’estriadiol empêche au moins temporairement, la montée post-ovulatoire de GTH normalement observée. Il est dès lors possible que d’autres facteurs soient impliqués dans le rétrocontrôle des gonades sur l’axe hypothalamo-hypophysaire.

References

